OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 118QRT
Interpretation Introduction
Interpretation:
For the isomerization reaction of iodine catalyzed cis-2-butene the estimated energy values and energy values for the intermediate in the given figure has to be compared.
Figure 1
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If you have any specific questions or if you need assistance with something related to the topics that start with the letters "d" to "f,"
=
○ KINETICS AND EQUILIBRIUM
Drawing the reaction energy diagram of a catalyzed reaction
Sketch a qualitative reaction energy diagram for a chemical reaction with and without a catalyst. Assume the uncatalyzed reaction is exothermic.
Note: Because the sketches are only qualitative, the energies in them don't have to be exact. They only have to have the right relationship to each other. For
example, if one energy is less than another, that fact should be clear in your sketch.
energy
Uncatalyzed reaction
reactants
Ea
reaction coordinate
products
energy
Catalyzed reaction
reactants
Ea
reaction coordinate
0/3
products
The formation of CsClCsCl from Cs(s)Cs(s) and Cl2(g)Cl2(g) involves the following steps:
Cs(s)→Cs(g)
12Cl2(g)→Cl(g)
Cs(g)→Cs+(g)+e−
Cl(g)+e−→Cl−(g)
Cs+(g)+Cl−(g)→CsCl(s)
Which of these steps absorb energy and which release energy?
Chapter 11 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 11.1 - For the reaction of crystal violet with NaOH(aq),...Ch. 11.1 - (a) From data in Table 11.1, calculate the rate of...Ch. 11.1 - For the reaction 4NO2(g)+O2(g)2N2O5(g) (a) express...Ch. 11.1 - Instantaneous rates for the reaction of hydroxide...Ch. 11.1 - Prob. 11.3CECh. 11.2 - Prob. 11.4ECh. 11.2 - Prob. 11.3PSPCh. 11.2 - Prob. 11.5ECh. 11.3 - Prob. 11.4PSPCh. 11.3 - Prob. 11.5PSP
Ch. 11.3 - Prob. 11.6PSPCh. 11.3 - Prob. 11.7PSPCh. 11.4 - Prob. 11.6ECh. 11.4 - Prob. 11.7CECh. 11.4 - Prob. 11.8PSPCh. 11.4 - Prob. 11.8CECh. 11.5 - Prob. 11.9PSPCh. 11.5 - The frequency factor A is 6.31 108 L mol1 s1 and...Ch. 11.6 - Prob. 11.10CECh. 11.7 - Prob. 11.11ECh. 11.7 - The Raschig reaction produces the industrially...Ch. 11.7 - Prob. 11.12ECh. 11.8 - The oxidation of thallium(I) ion by cerium(IV) ion...Ch. 11.9 - Prob. 11.11PSPCh. 11.9 - Prob. 11.14CECh. 11 - An excellent way to make highly pure nickel metal...Ch. 11 - Prob. 1QRTCh. 11 - Prob. 2QRTCh. 11 - Prob. 3QRTCh. 11 - Prob. 4QRTCh. 11 - Prob. 5QRTCh. 11 - Prob. 6QRTCh. 11 - Prob. 7QRTCh. 11 - Prob. 8QRTCh. 11 - Prob. 9QRTCh. 11 - Prob. 10QRTCh. 11 - Prob. 11QRTCh. 11 - Cyclobutane can decompose to form ethylene:
The...Ch. 11 - Prob. 13QRTCh. 11 - Prob. 14QRTCh. 11 - For the reaction 2NO2(g)2NO(g)+O2(g) make...Ch. 11 - Prob. 16QRTCh. 11 - Prob. 17QRTCh. 11 - Ammonia is produced by the reaction between...Ch. 11 - Prob. 19QRTCh. 11 - Prob. 20QRTCh. 11 - The reaction of CO(g) + NO2(g) is second-order in...Ch. 11 - Nitrosyl bromide, NOBr, is formed from NO and Br2....Ch. 11 - Prob. 23QRTCh. 11 - Prob. 24QRTCh. 11 - Prob. 25QRTCh. 11 - For the reaction
these data were obtained at 1100...Ch. 11 - Prob. 27QRTCh. 11 - Prob. 28QRTCh. 11 - Prob. 29QRTCh. 11 - Prob. 30QRTCh. 11 - Prob. 31QRTCh. 11 - Prob. 32QRTCh. 11 - For the reaction of phenyl acetate with water the...Ch. 11 - When phenacyl bromide and pyridine are both...Ch. 11 - The compound p-methoxybenzonitrile N-oxide, which...Ch. 11 - Prob. 36QRTCh. 11 - Radioactive gold-198 is used in the diagnosis of...Ch. 11 - Prob. 38QRTCh. 11 - Prob. 39QRTCh. 11 - Prob. 40QRTCh. 11 - Prob. 41QRTCh. 11 - Prob. 42QRTCh. 11 - Prob. 43QRTCh. 11 - Prob. 44QRTCh. 11 - Prob. 45QRTCh. 11 - Prob. 46QRTCh. 11 - Prob. 47QRTCh. 11 - Prob. 48QRTCh. 11 - Prob. 49QRTCh. 11 - Prob. 50QRTCh. 11 - Prob. 51QRTCh. 11 - Prob. 52QRTCh. 11 - For the reaction of iodine atoms with hydrogen...Ch. 11 - Prob. 54QRTCh. 11 - The activation energy Ea is 139.7 kJ mol1 for the...Ch. 11 - Prob. 56QRTCh. 11 - Prob. 57QRTCh. 11 - Prob. 58QRTCh. 11 - Prob. 59QRTCh. 11 - Prob. 60QRTCh. 11 - Prob. 61QRTCh. 11 - Prob. 62QRTCh. 11 - Prob. 63QRTCh. 11 - Which of the reactions in Question 62 would (a)...Ch. 11 - Prob. 65QRTCh. 11 - Prob. 66QRTCh. 11 - Prob. 67QRTCh. 11 - Prob. 68QRTCh. 11 - Prob. 69QRTCh. 11 - Prob. 70QRTCh. 11 - Prob. 71QRTCh. 11 - For the reaction the rate law is Rate=k[(CH3)3CBr]...Ch. 11 - Prob. 73QRTCh. 11 - Prob. 74QRTCh. 11 - Prob. 75QRTCh. 11 - For this reaction mechanism,
write the chemical...Ch. 11 - Prob. 77QRTCh. 11 - Prob. 78QRTCh. 11 - Prob. 79QRTCh. 11 - When enzymes are present at very low...Ch. 11 - Prob. 81QRTCh. 11 - The reaction is catalyzed by the enzyme succinate...Ch. 11 - Prob. 83QRTCh. 11 - Many biochemical reactions are catalyzed by acids....Ch. 11 - Prob. 85QRTCh. 11 - Prob. 86QRTCh. 11 - Prob. 87QRTCh. 11 - Prob. 88QRTCh. 11 - Prob. 89QRTCh. 11 - Prob. 90QRTCh. 11 - Prob. 91QRTCh. 11 - Prob. 92QRTCh. 11 - Prob. 93QRTCh. 11 - Prob. 94QRTCh. 11 - Nitryl fluoride is an explosive compound that can...Ch. 11 - Prob. 96QRTCh. 11 - Prob. 97QRTCh. 11 - For a reaction involving the decomposition of a...Ch. 11 - Prob. 99QRTCh. 11 - Prob. 100QRTCh. 11 - Prob. 101QRTCh. 11 - This graph shows the change in concentration as a...Ch. 11 - Prob. 103QRTCh. 11 - Prob. 104QRTCh. 11 - Prob. 105QRTCh. 11 - Prob. 106QRTCh. 11 - Prob. 107QRTCh. 11 - Prob. 108QRTCh. 11 - Prob. 109QRTCh. 11 - Prob. 110QRTCh. 11 - Prob. 111QRTCh. 11 - Prob. 112QRTCh. 11 - Prob. 113QRTCh. 11 - Prob. 114QRTCh. 11 - Prob. 115QRTCh. 11 - Prob. 116QRTCh. 11 - Prob. 118QRTCh. 11 - Prob. 119QRTCh. 11 - In a time-resolved picosecond spectroscopy...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - (Section 11-5) A rule of thumb is that for a...Ch. 11 - Prob. 11.BCPCh. 11 - Prob. 11.CCPCh. 11 - Prob. 11.DCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Silicon forms a series of compounds analogous to the al-kanes and having the general formula SinH2n+2. The first of these compounds is silane, SiH4, which is used in the electronics industry to produce thin ultrapure silicon films. SiH4(g) is somewhat difficult to work with because it is py-ropboric at room temperature—meaning that it bursts into flame spontaneously when exposed to air. (a) Write an equation for the combustion of SiH4(g). (The reaction is analogous to hydrocarbon combustion, and SiO2 is a solid under standard conditions. Assume the water produced will be a gas.) (b) Use the data from Appendix E to calculate ? for this reaction. (c) Calculate G and show that the reaction is spontaneous at 25°C. (d) Compare G for this reaction to the combustion of methane. (See the previous problem.) Are the reactions in these two exercises enthalpy or entropy driven? Explain.arrow_forwardThe compound NO2Cl decomposes according to the following overall equation: 2NO2Cl à 2NO2 + Cl2 The rate law is Rate=k[NO2Cl]2/[NO2]. Determine the Lewis structures for all reactants and products. Devise a plausible mechanism for this reaction, taking into account both the balanced equation and the rate law. Demonstrate that your mechanism is plausible by deriving the rate law from the mechanism. Draw the energy profile for the mechanism.arrow_forwardConsider the following reaction mechanism: Step 1: A3(g) → A2(g) + A(g) Step 2: A3(g) + A(g) → 2A2(g) What is the role of A(g) and what is the overall balanced equation? Periodic Table and Datasheet O A(g) is an intermediate; 2A3(g) + A(g) → 3A2(g) + A(g) O A(g) is a catalyst; 2A3(g) + A(g)→ 3A2(g) + A(g) O A(g) is an intermediate; 2A3(g) –→3A2(g) O A(g) is a catalyst; 2A3(g) → 3A2(g)arrow_forward
- Use the following equations (picture) to determine the deltaH ° for the target reaction. Target: N2H2(l)+2H2O2(l)——> N2(g)+4H2O(l)arrow_forward2. Select the energy profile templates below (A or B) that correctly represents the enthalpy change calculated for the decomposition of ammonium nitrate and label it showing the reactants, products, change in enthalpy for the reaction, AHRXn and the activation energy, Ea. Potential Energy Reactants A Reaction Progress->> Products ΔΗ Potential Energy Reactants ΔΗ B Products Reaction Progress-> 3. Use your understanding of reaction kinetics and collision theory to explain why an increase in temperature causes an increase in reaction rate. 4. Evaluate the changes in physical state that occur during the decomposition of ammonium nitrate and predict the sign on AS for the reaction. 5. Use the standard entropies, S° to determine the AS (in J K-¹ mol¹ ) for the reaction. Does the sign on AS match your prediction?arrow_forwardно HO HO HO 0 + ½ O, → + H,0 H H но OH ascorbic acid dehydroascorbic acid Vitamin C is oxidized slowly to dehydroascorbic acid by the oxygen in air. It is catalyzed by ions such as Cu*2 and Fe*3. The reaction can be followed by measuring the ultraviolet absorbance at 243 nm. Time (hours) Absorbance (A) 1/A In A - In A 0.75 1.3 -0.29 0.29 1 0.38 2.6 -0.97 0.97 2 0.19 5.3 - 1.7 1.7 3 0.095 11 - 2.4 2.4 29. What is the hybridization of carbon 1 (far left) and carbon 2 (middle) in this hydrocarbon: CH3CH=CH2? (A) sp³, sp (B) sp?, sp? (C) sp³, sp? (D) sp, sp?arrow_forward
- The data below were collected for the following reaction at 35° C: 2(CH3)3 CSOH(g) → (CH3)3CS(O)SC(CH3)3 (g) Time (min) [(CH3)3 CSOH] (mol · L−¹) 0.0 1.554 10.8 0.661 19.1 0.343 37.0 0.083 59.5 0.014 75.1 0.004 Part C From the slope of the appropriate plot, determine the value of the rate constant at this temperature. VG ΑΣΦ Submit Request Answer ? 5-1arrow_forwardTrue or False _____ The kinetics of reaction deals with the energies of the products and the reactants. _____ Thermodynamics deals with reaction rates. _____ Understanding the reactions kinetics can help you understand the mechanism of a reaction. _____ Transition states are stable. _____ This is an example of an overall second order reaction (rate = kr[CH3Br][CH3-]) _____ The rate determining step is the step with the lowest activation energy.arrow_forwardFor a reaction that follows the general rate law Rate = KIAJ [B), what will happen to the rate of reaction if the concentration of A and B are increased by a factor of 6? O The rate will increase by a factor of 36.00. O The rate will decrease by a factor of 1/6.00. O The rate will decrease by a factor of 1/36.00. O The rate will increase by a factor of 6.00.arrow_forward
- Consider the following reaction: (a) The rate law for this reaction is first order in NO₂(g) and first order in O3(g). What is the rate law for this reaction? O Rate = k [NO₂(g)] [03(9)] Rate = k [NO₂(g)]² [03(9)] O Rate = k [NO₂(g)] [03(9)]² O Rate = k [NO₂(g)]² [03(g)]² Rate = k [NO₂(g)] [03(g)]³ Rate = k [NO₂(g)]4 [03(9)] (b) If the rate constant for this reaction at a certain temperature is 73200, what is the reaction rate when [NO₂(g)] = 0.973 M and [O3(9)] = 1.42 M? Rate = 2 NO₂(g) + 03(g) → N₂05(9) + O₂(g) M/s. Rate = (c) What is the reaction rate when the concentration of NO₂(g) is doubled, to 1.95 M while the concentration of O3(g) is 1.42 M? M/sarrow_forwardNitrogen dioxide reacts with carbon monoxide by the overall equation NO2 (g) + CO(g) → NO(g) + CO2(9) At a particular temperature, the reaction is second order in NO2 and zero order in CO. The rate constant is 0.515 L/(mol -s). How much heat energy evolves per second initially from 5.75 L of reaction mixture containing 2.60 x 10-2 M NO2? NO2 (g) + CO(g) → NO(g) + CO2(g) AH; = 33.10 kJ/mol -110.5 kJ/mol 90.29 kJ/mol -393.5 kJ/mol Assume the enthalpy change is constant with temperature. Energy kJ/sarrow_forward4. What is the difference between catalysts and intermediates? Catalysts may appear in rate law expressions. Intermediates may appear in rate law expres- sions. A catalyst gets made by an early step in a mech- anism, but used up again in a later step. An intermediate gets made by an early step in a mechanism, but used up again in a later step.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY