OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 21QRT
The reaction of CO(g) + NO2(g) is second-order in NO2 and zeroth-order in CO at temperatures less than 500 K.
- (a) Write the rate law for the reaction.
- (b) Determine how the reaction rate changes if the NO2 concentration is halved.
- (c) Determine how the reaction rate changes if the concentration of CO is doubled.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the following reaction:
2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g)
(a) The rate law for this reaction is second order in NO(g) and first-order in H2(g). What is the rate law for this reaction?
(b) If the rate constant for this reaction at a certain temperature is 9.70e+04, what is the reaction rate when [NO(g)] = 0.0560 M and [H2(g)] = 0.119 M?Rate = M/s.(c) What is the reaction rate when the concentration of NO(g) is doubled, to 0.112 M while the concentration of H2(g) is 0.119 M?Rate = M/s
(a) For a reaction A + B —> P, the rate is given by Rate = k[A]2 [B](i) How is the rate of reaction affected if the concentration of A is doubled?(ii) What is the overall order of reaction if B is present in large excess?(b) A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction.(Given: log 2 = 0.301, log 3 = 0.4771, log 4 = 0.6021)
Consider the following reaction:2 NO(g) + 2 H2(g)--->N2(g) + 2 H2O(g)(a) The rate law for this reaction is first order in H2 andsecond order in NO. Write the rate law. (b) If the rateconstant for this reaction at 1000 K is 6.0 x 104 M-2 s-1,what is the reaction rate when [NO] = 0.035 M and[H2] = 0.015 M? (c) What is the reaction rate at 1000 Kwhen the concentration of NO is increased to 0.10 M,while the concentration of H2 is 0.010 M? (d) What is thereaction rate at 1000 K if [NO] is decreased to 0.010 M and[H2] is increased to 0.030 M?
Chapter 11 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 11.1 - For the reaction of crystal violet with NaOH(aq),...Ch. 11.1 - (a) From data in Table 11.1, calculate the rate of...Ch. 11.1 - For the reaction 4NO2(g)+O2(g)2N2O5(g) (a) express...Ch. 11.1 - Instantaneous rates for the reaction of hydroxide...Ch. 11.1 - Prob. 11.3CECh. 11.2 - Prob. 11.4ECh. 11.2 - Prob. 11.3PSPCh. 11.2 - Prob. 11.5ECh. 11.3 - Prob. 11.4PSPCh. 11.3 - Prob. 11.5PSP
Ch. 11.3 - Prob. 11.6PSPCh. 11.3 - Prob. 11.7PSPCh. 11.4 - Prob. 11.6ECh. 11.4 - Prob. 11.7CECh. 11.4 - Prob. 11.8PSPCh. 11.4 - Prob. 11.8CECh. 11.5 - Prob. 11.9PSPCh. 11.5 - The frequency factor A is 6.31 108 L mol1 s1 and...Ch. 11.6 - Prob. 11.10CECh. 11.7 - Prob. 11.11ECh. 11.7 - The Raschig reaction produces the industrially...Ch. 11.7 - Prob. 11.12ECh. 11.8 - The oxidation of thallium(I) ion by cerium(IV) ion...Ch. 11.9 - Prob. 11.11PSPCh. 11.9 - Prob. 11.14CECh. 11 - An excellent way to make highly pure nickel metal...Ch. 11 - Prob. 1QRTCh. 11 - Prob. 2QRTCh. 11 - Prob. 3QRTCh. 11 - Prob. 4QRTCh. 11 - Prob. 5QRTCh. 11 - Prob. 6QRTCh. 11 - Prob. 7QRTCh. 11 - Prob. 8QRTCh. 11 - Prob. 9QRTCh. 11 - Prob. 10QRTCh. 11 - Prob. 11QRTCh. 11 - Cyclobutane can decompose to form ethylene:
The...Ch. 11 - Prob. 13QRTCh. 11 - Prob. 14QRTCh. 11 - For the reaction 2NO2(g)2NO(g)+O2(g) make...Ch. 11 - Prob. 16QRTCh. 11 - Prob. 17QRTCh. 11 - Ammonia is produced by the reaction between...Ch. 11 - Prob. 19QRTCh. 11 - Prob. 20QRTCh. 11 - The reaction of CO(g) + NO2(g) is second-order in...Ch. 11 - Nitrosyl bromide, NOBr, is formed from NO and Br2....Ch. 11 - Prob. 23QRTCh. 11 - Prob. 24QRTCh. 11 - Prob. 25QRTCh. 11 - For the reaction
these data were obtained at 1100...Ch. 11 - Prob. 27QRTCh. 11 - Prob. 28QRTCh. 11 - Prob. 29QRTCh. 11 - Prob. 30QRTCh. 11 - Prob. 31QRTCh. 11 - Prob. 32QRTCh. 11 - For the reaction of phenyl acetate with water the...Ch. 11 - When phenacyl bromide and pyridine are both...Ch. 11 - The compound p-methoxybenzonitrile N-oxide, which...Ch. 11 - Prob. 36QRTCh. 11 - Radioactive gold-198 is used in the diagnosis of...Ch. 11 - Prob. 38QRTCh. 11 - Prob. 39QRTCh. 11 - Prob. 40QRTCh. 11 - Prob. 41QRTCh. 11 - Prob. 42QRTCh. 11 - Prob. 43QRTCh. 11 - Prob. 44QRTCh. 11 - Prob. 45QRTCh. 11 - Prob. 46QRTCh. 11 - Prob. 47QRTCh. 11 - Prob. 48QRTCh. 11 - Prob. 49QRTCh. 11 - Prob. 50QRTCh. 11 - Prob. 51QRTCh. 11 - Prob. 52QRTCh. 11 - For the reaction of iodine atoms with hydrogen...Ch. 11 - Prob. 54QRTCh. 11 - The activation energy Ea is 139.7 kJ mol1 for the...Ch. 11 - Prob. 56QRTCh. 11 - Prob. 57QRTCh. 11 - Prob. 58QRTCh. 11 - Prob. 59QRTCh. 11 - Prob. 60QRTCh. 11 - Prob. 61QRTCh. 11 - Prob. 62QRTCh. 11 - Prob. 63QRTCh. 11 - Which of the reactions in Question 62 would (a)...Ch. 11 - Prob. 65QRTCh. 11 - Prob. 66QRTCh. 11 - Prob. 67QRTCh. 11 - Prob. 68QRTCh. 11 - Prob. 69QRTCh. 11 - Prob. 70QRTCh. 11 - Prob. 71QRTCh. 11 - For the reaction the rate law is Rate=k[(CH3)3CBr]...Ch. 11 - Prob. 73QRTCh. 11 - Prob. 74QRTCh. 11 - Prob. 75QRTCh. 11 - For this reaction mechanism,
write the chemical...Ch. 11 - Prob. 77QRTCh. 11 - Prob. 78QRTCh. 11 - Prob. 79QRTCh. 11 - When enzymes are present at very low...Ch. 11 - Prob. 81QRTCh. 11 - The reaction is catalyzed by the enzyme succinate...Ch. 11 - Prob. 83QRTCh. 11 - Many biochemical reactions are catalyzed by acids....Ch. 11 - Prob. 85QRTCh. 11 - Prob. 86QRTCh. 11 - Prob. 87QRTCh. 11 - Prob. 88QRTCh. 11 - Prob. 89QRTCh. 11 - Prob. 90QRTCh. 11 - Prob. 91QRTCh. 11 - Prob. 92QRTCh. 11 - Prob. 93QRTCh. 11 - Prob. 94QRTCh. 11 - Nitryl fluoride is an explosive compound that can...Ch. 11 - Prob. 96QRTCh. 11 - Prob. 97QRTCh. 11 - For a reaction involving the decomposition of a...Ch. 11 - Prob. 99QRTCh. 11 - Prob. 100QRTCh. 11 - Prob. 101QRTCh. 11 - This graph shows the change in concentration as a...Ch. 11 - Prob. 103QRTCh. 11 - Prob. 104QRTCh. 11 - Prob. 105QRTCh. 11 - Prob. 106QRTCh. 11 - Prob. 107QRTCh. 11 - Prob. 108QRTCh. 11 - Prob. 109QRTCh. 11 - Prob. 110QRTCh. 11 - Prob. 111QRTCh. 11 - Prob. 112QRTCh. 11 - Prob. 113QRTCh. 11 - Prob. 114QRTCh. 11 - Prob. 115QRTCh. 11 - Prob. 116QRTCh. 11 - Prob. 118QRTCh. 11 - Prob. 119QRTCh. 11 - In a time-resolved picosecond spectroscopy...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - (Section 11-5) A rule of thumb is that for a...Ch. 11 - Prob. 11.BCPCh. 11 - Prob. 11.CCPCh. 11 - Prob. 11.DCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardConsider the reaction A + B ¡ C + D. Is each of the following statements true or false? (a) The rate law for the reaction must be Rate = k3A43B4. (b) If the reaction is an elementary reaction, the rate law is second order. (c) If the reaction is an elementary reaction, the rate law of the reverse reaction is first order. (d) The activation energy for the reverse reaction must be greater than that for the forward reaction.arrow_forward
- The decomposition of XY is second order in XY and has a rate constant of 7.41 × 10−3 L·mol−1·s−1 at a certain temperature, the half-life for this reaction at an initial concentration of 0.101 mol·L−1 1336. A) If the initial concentration of XY is 0.225 mol·L−1, how long will it take for the concentration to decrease to 6.95 × 10−2 mol·L−1 ?, B) If the initial concentration of XY is 0.080 mol·L−1, what is the concentration of XY after 75 s ?arrow_forward1. Which of the following statements is incorrect? (A) As the chemical reaction proceeds, the rate of reaction increases. (B) The reaction rate almost gets doubled for 10°C rise in temperature. (C) For a first order chemical reaction, the rate constant has unit of time-1. (D) Chemical kinetics can predict the rate of a chemical reaction. 2. In a chemical reaction, represented by A → P, it is observed that the rate of reaction increases by a factor of 4 on doubling the concentration of the reactant. The rate of reaction increases by a factor of 9 on trebling the concentration of the reactant. Then the rate of the reaction is proportional to (A) CA (B) CA2 (C) CA3 (D) CA4 3. An elementary reaction has the stoichiometric equation A + 2B = P. What is the order of reaction (A) 0 (B) 1 (C) 2 (D) 3 4. It states that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. (A) Law of mass action…arrow_forwardConsider the following reaction: 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) (a) The rate law for this reaction is second order in NO(g) and first order in H2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 79200, what is the reaction rate when [NO(g)] = 0.0852 M and [H2(g)] = 0.137 M?Rate =____ M/s.(c) What is the reaction rate when the concentration of NO(g) is doubled, to 0.170 M while the concentration of H2(g) is 0.137 M?Rate = ____ M/sarrow_forward
- 6. The rate constant for the reaction, 2 N₂O5 (g) → 4 NO2 (g) + O2 (g), doubles when the temperature is raised from 295.65 K to 300.62 K. (a) Determine the activation energy (in kJ/mol) for the reaction, assuming that the pre- exponential factor, A, in the Arrhenius equation is independent of temperature. (b) At what temperature would you predict this rate constant to increase by another factor of 10 relative to its value at 300.62 K?arrow_forwardAcetone is one of the most important solvents in organic chemistry. It is used to dissolve everything from fats and waxes to airplane glue and nail polish. At high temperatures, it decomposes in a first-order process to methane and ketene (CH2═C═O). At 600°C, the rate constant is 8.7 × 10−3 s−1. (a) What is the half-life of the reaction? Give your answer in scientific notation. (b) How long does it take for 38% of a sample of acetone to decompose? (c) How long does it take for 81% of a sample of acetone to decompose? Give your answer in scientific notation.arrow_forwardConsider the following reaction: O2(g) + 2 NO(g) 2 NO2(g)(a) The rate law for this reaction is first order in O2(g) and second order in NO(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 7840, what is the reaction rate when [O2(g)] = 0.0162 M and [NO(g)] = 0.0299 M?Rate = _____ M/s.(c) What is the reaction rate when the concentration of O2(g) is doubled, to 0.0324 M while the concentration of NO(g) is 0.0299 M?Rate = _____ M/sarrow_forward
- Consider the following reaction: 4 HBr(g) + O2(g) 2 H2O(g) + 2 Br2(g)(a) The rate law for this reaction is first order in HBr(g) and first order in O2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 8.80e+03, what is the reaction rate when [HBr(g)] = 0.00429 M and [O2(g)] = 0.00758 M?Rate = _______ M/s.(c) What is the reaction rate when the concentration of HBr(g) is doubled, to 0.00858 M while the concentration of O2(g) is 0.00758 M?Rate = _______ M/sarrow_forward(a) For a reaction, A + B → Product, the rate law is given by, Rate = k[A]1[B]2. What is the order of the reaction?(b) Write the unit of rate constant ‘k’ for the first order reaction.arrow_forwardThe isomerization of cyclopropane, C3H6, to propylene, CH2=CHCH3, is first order in cyclopropane and first order overall. At 1000oC, the rate constant is 9.2/s. (a) What is the half-life of cyclopropane at 1000oC? (b) How long would it take for the concentration of cyclopropane to decrease to 50% of its initial value? (c) To 25% of its initial value?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY