BIO CALC Refer to the discussion of holding a dumbbell in Example 11.4 (Section 11.3). The maximum weight that can be held in this way is limited by the maximum allowable tendon tension T (determined by the strength of the tendons) and by the distance D from the elbow to where the tendon attaches to the forearm, (a) Let T max represent the maximum value of the tendon tension. Use the results of Example 11.4 to express w max (the maximum weight that can be held) in terms of T max , L , D , and h . Your expression should not include the angle θ . (b) The tendons of different primates are attached to the forearm at different values of D . Calculate the derivative of w max with respect to D , and determine whether the derivative is positive or negative, (c) A chimpanzee tendon is attached to the forearm at a point farther from the elbow than for humans. Use this to explain why chimpanzees have stronger arms than humans. (The disadvantage is that chimpanzees have less flexible arms than do humans.)
BIO CALC Refer to the discussion of holding a dumbbell in Example 11.4 (Section 11.3). The maximum weight that can be held in this way is limited by the maximum allowable tendon tension T (determined by the strength of the tendons) and by the distance D from the elbow to where the tendon attaches to the forearm, (a) Let T max represent the maximum value of the tendon tension. Use the results of Example 11.4 to express w max (the maximum weight that can be held) in terms of T max , L , D , and h . Your expression should not include the angle θ . (b) The tendons of different primates are attached to the forearm at different values of D . Calculate the derivative of w max with respect to D , and determine whether the derivative is positive or negative, (c) A chimpanzee tendon is attached to the forearm at a point farther from the elbow than for humans. Use this to explain why chimpanzees have stronger arms than humans. (The disadvantage is that chimpanzees have less flexible arms than do humans.)
BIO CALC Refer to the discussion of holding a dumbbell in Example 11.4 (Section 11.3). The maximum weight that can be held in this way is limited by the maximum allowable tendon tension T (determined by the strength of the tendons) and by the distance D from the elbow to where the tendon attaches to the forearm, (a) Let Tmax represent the maximum value of the tendon tension. Use the results of Example 11.4 to express wmax (the maximum weight that can be held) in terms of Tmax, L, D, and h. Your expression should not include the angle θ. (b) The tendons of different primates are attached to the forearm at different values of D. Calculate the derivative of wmax with respect to D, and determine whether the derivative is positive or negative, (c) A chimpanzee tendon is attached to the forearm at a point farther from the elbow than for humans. Use this to explain why chimpanzees have stronger arms than humans. (The disadvantage is that chimpanzees have less flexible arms than do humans.)
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.