
Concept explainers
(a)
Interpretation:
Equation for nickel-58 bombarded with an proton giving alpha particle as product has to be written.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. This is a natural transmutation reaction where the nuclide of one element is converted into nuclide of another element. Radioactive decay happens naturally. This can also be done artificially in the laboratory by means of bombardment reaction. Bombardment reaction is the one where the target nuclei is hit by a small fast moving high-energy particle to give a daughter nuclide and a small particle such as proton or neutron. This can be represented in form of a
(a)

Answer to Problem 11.44EP
The equation is,
Explanation of Solution
Given description is an alpha particle bombards with beryllium-9 to give a neutron product. The incomplete equation for this can be written as,
In a nuclear equation the sum of subscript on both sides has to be equal and the sum of superscripts on both sides has to be equal. By looking into the above equation, the sum of superscript in the product side is 4 and the sum of subscript in the product side is 2. This has to be balanced in the reactant side. Sum of superscript in the reactant side is 59. Sum of subscript is 29. There is a short of 55 in the superscript and 27 in the subscript of the product side when comparing with the reactant side. The element with
The equation for proton bombarding with nickel-58 is written.
(b)
Interpretation:
Equation for aluminium-27 bombarded with an alpha particle giving neutron as product has to be written.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. This is a natural transmutation reaction where the nuclide of one element is converted into nuclide of another element. Radioactive decay happens naturally. This can also be done artificially in the laboratory by means of bombardment reaction. Bombardment reaction is the one where the target nuclei is hit by a small fast moving high-energy particle to give a daughter nuclide and a small particle such as proton or neutron. This can be represented in form of a nuclear equation. A balanced nuclear equation is the one in which the sum of subscripts on both sides are equal and sum of superscripts on both sides are equal.
(b)

Answer to Problem 11.44EP
The equation is,
Explanation of Solution
Given description is an alpha particle bombards with aluminium-27 to give a neutron product. The incomplete equation for this can be written as,
In a nuclear equation the sum of subscript on both sides has to be equal and the sum of superscripts on both sides has to be equal. By looking into the above equation, the sum of superscript in the product side is 1 and the sum of subscript in the product side is 0. This has to be balanced in the reactant side. Sum of superscript in the reactant side is 31. Sum of subscript is 15. There is a short of 30 in the superscript and 15 in the subscript of the product side when comparing with the reactant side. The element with atomic number 15 is phosphorus. Therefore, the missing nuclear symbol is
The equation for alpha particle bombarding with aluminium-27 is written.
(c)
Interpretation:
Equation for curium-246 giving nobelium-254 and four neutrons on bombardment with a small particle has to be written.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. This is a natural transmutation reaction where the nuclide of one element is converted into nuclide of another element. Radioactive decay happens naturally. This can also be done artificially in the laboratory by means of bombardment reaction. Bombardment reaction is the one where the target nuclei is hit by a small fast moving high-energy particle to give a daughter nuclide and a small particle such as proton or neutron. This can be represented in form of a nuclear equation. A balanced nuclear equation is the one in which the sum of subscripts on both sides are equal and sum of superscripts on both sides are equal.
(c)

Answer to Problem 11.44EP
The equation is,
Explanation of Solution
Given description is a small particle bombards with curium-246 to give nobelium-254 and four neutrons as product. The incomplete equation for this can be written as,
In a nuclear equation the sum of subscript on both sides has to be equal and the sum of superscripts on both sides has to be equal. By looking into the above equation, the sum of superscript in the product side is 258 and the sum of subscript in the product side is 102. This has to be balanced in the reactant side. Sum of superscript in the reactant side is 246. Sum of subscript is 96. There is a short of 12 in the superscript and 6 in subscript of the reactant side when comparing with the product side. The element with the atomic number 6 is carbon. Therefore, the missing nuclear symbol is
The equation for curium-246 converting into nobelium-254 and four neutrons by a small particle by bombarding is written.
(d)
Interpretation:
Equation for bombarding a nuclide with alpha particle that gives curium-252 and neutron has to be written.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. This is a natural transmutation reaction where the nuclide of one element is converted into nuclide of another element. Radioactive decay happens naturally. This can also be done artificially in the laboratory by means of bombardment reaction. Bombardment reaction is the one where the target nuclei is hit by a small fast moving high-energy particle to give a daughter nuclide and a small particle such as proton or neutron. This can be represented in form of a nuclear equation. A balanced nuclear equation is the one in which the sum of subscripts on both sides are equal and sum of superscripts on both sides are equal.
(d)

Answer to Problem 11.44EP
The equation is,
Explanation of Solution
Given description is a nuclide is bombarded by alpha particle that gives curium-252 and neutron. The incomplete equation for this can be written as,
In a nuclear equation the sum of subscript on both sides has to be equal and the sum of superscripts on both sides has to be equal. By looking into the above equation, the sum of superscript in the product side is 253 and the sum of subscript in the product side is 98. This has to be balanced in the reactant side. Sum of superscript in the reactant side is 4. Sum of subscript is 2. There is a short of 249 in the superscript and a short of 96 in subscript of the reactant side when comparing with the product side. Plutonium is the element that has atomic number 96. Therefore, the missing nuclear symbol is
The equation for alpha particle bombarding with a nuclide giving curium-252 and neutron is given.
Want to see more full solutions like this?
Chapter 11 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- Diels Alder Cycloaddition: Focus on regiochemistry (problems E-F) –> match + of thedienophile and - of the diene while also considering stereochemistry (endo).arrow_forwardHELP! URGENT! PLEASE RESOND ASAP!arrow_forwardQuestion 4 Determine the rate order and rate constant for sucrose hydrolysis. Time (hours) [C6H12O6] 0 0.501 0.500 0.451 1.00 0.404 1.50 0.363 3.00 0.267 First-order, k = 0.210 hour 1 First-order, k = 0.0912 hour 1 O Second-order, k = 0.590 M1 hour 1 O Zero-order, k = 0.0770 M/hour O Zero-order, k = 0.4896 M/hour O Second-order, k = 1.93 M-1-hour 1 10 ptsarrow_forward
- Determine the rate order and rate constant for sucrose hydrolysis. Time (hours) [C6H12O6] 0 0.501 0.500 0.451 1.00 0.404 1.50 0.363 3.00 0.267arrow_forwardDraw the products of the reaction shown below. Use wedge and dash bonds to indicate stereochemistry. Ignore inorganic byproducts. OSO4 (cat) (CH3)3COOH Select to Draw ઘarrow_forwardCalculate the reaction rate for selenious acid, H2SeO3, if 0.1150 M I-1 decreases to 0.0770 M in 12.0 minutes. H2SeO3(aq) + 6I-1(aq) + 4H+1(aq) ⟶ Se(s) + 2I3-1(aq) + 3H2O(l)arrow_forward
- Problem 5-31 Which of the following objects are chiral? (a) A basketball (d) A golf club (b) A fork (c) A wine glass (e) A spiral staircase (f) A snowflake Problem 5-32 Which of the following compounds are chiral? Draw them, and label the chirality centers. (a) 2,4-Dimethylheptane (b) 5-Ethyl-3,3-dimethylheptane (c) cis-1,4-Dichlorocyclohexane Problem 5-33 Draw chiral molecules that meet the following descriptions: (a) A chloroalkane, C5H11Cl (c) An alkene, C6H12 (b) An alcohol, C6H140 (d) An alkane, C8H18 Problem 5-36 Erythronolide B is the biological precursor of erythromycin, a broad-spectrum antibiotic. How H3C CH3 many chirality centers does erythronolide B have? OH Identify them. H3C -CH3 OH Erythronolide B H3C. H3C. OH OH CH3arrow_forwardPLEASE HELP! URGENT! PLEASE RESPOND!arrow_forward2. Propose a mechanism for this reaction. ہلی سے ملی N H (excess)arrow_forward
- Steps and explanationn please.arrow_forwardProblem 5-48 Assign R or S configurations to the chirality centers in ascorbic acid (vitamin C). OH H OH HO CH2OH Ascorbic acid O H Problem 5-49 Assign R or S stereochemistry to the chirality centers in the following Newman projections: H Cl H CH3 H3C. OH H3C (a) H H H3C (b) CH3 H Problem 5-52 Draw the meso form of each of the following molecules, and indicate the plane of symmetry in each: OH OH (a) CH3CHCH2CH2CHCH3 CH3 H3C. -OH (c) H3C CH3 (b) Problem 5-66 Assign R or S configurations to the chiral centers in cephalexin, trade-named Keflex, the most widely prescribed antibiotic in the United States. H2N H IHH S Cephalexin N. CH3 CO₂Harrow_forwardSteps and explanationn please.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





