![Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781305717534/9781305717534_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
Balanced
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(b)
Interpretation:
Balanced nuclear equation for beta decay of uranium-235 has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(c)
Interpretation:
Balanced nuclear equation for beta decay of
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(d)
Interpretation:
Balanced nuclear equation for beta decay of iron-60 has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 11 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- Nonearrow_forwardCarbohydrates- Draw out the Hawthorne structure for a sugar from the list given in class. Make sure to write out all atoms except for carbons within the ring. Make sure that groups off the carbons in the ring are in the correct orientation above or below the plane. Make sure that bonds are in the correct orientation. Include the full name of the sugar. You can draw out your curve within the text box or upload a drawing below.arrow_forwardHow many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of H2SO4 and in the final volume (2.000 L) and assume random error.arrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forward* How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? * If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of NaOH and in the final volume (2.000 L) and assume random error.arrow_forwardYou are tasked with creating a calibration curve for the absorbance of cobalt solutions of various concentrations. You must prepare 5 standards with concentrations between 1.00 mg/L and 10.0 mg/L Co2+. You have a stock solution with a concentration of 40 mg/L Co2+ and all the standard lab glassware including transfer pipets and flasks. Explain how you would make your 5 standard solutions of various concentrations, including what glassware you would use to measure and prepare each solution.arrow_forward
- Predict the product and write the mechanism. CH3-CH=CH-CH2-CH3 + NBS- hv CCl4arrow_forwardHow exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?arrow_forwardA researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)