Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259977251
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.183RP
A drag racing car starts from rest and moves down the racetrack with an acceleration defined by a = 50 − 10t, where a and t are in m/s2 and seconds, respectively. After reaching a speed of 125 m/s, a parachute is deployed to help slow down the dragster. Knowing that this deceleration is defined by the relationship a = −0.02v2, where v is the velocity in m/s, determine (a) the total time from the beginning of the race until the car slows back down to 10 m/s, (b) the total distance the car travels during this time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A body moves along a linear path and its rate of change of velocity varies with time and is written as a=2-3t, where t is the time in second. After 5 second, from start of observation its velocity is determined to be 20 m/s. After 10 second from start of observation, the body is at 85 m far from the origin. Determine the following:a. Rate of change of velocity and velocity at the start of motion.b. Distance from the origin at the start of observationc. Time after start of observation in which the velocity becomes zero.
The acceleration of a particle moving horizontally under rectilinear motion is defined by the relation a=9.4t2-4.6t where a is in ft/s2 and t is in s.
Initially, the particle is moving at 6ft/s and started at x=9.6 ft. Determine the position of the particle at t=4.4s. Round off only on the final answer expressed in 3 decimals. Indicate appropriate units.
1. The motion of a particle is defined by the relation x = -10² + 8t + 12, where x and t are
expressed in meters and seconds, respectively. Determine the position, the velocity, and the
acceleration of the particle when t = 1 s.
2. The vertical motion of mass A is defined by the relation x = 10 sin 2t +15cos2t +100, where x
and t are expressed in mm and seconds, respectively. Determine (a) the position, velocity and
acceleration of A when t = 1 s, (b) the maximum velocity and acceleration of A.
A
mall
ale:
amall
boring Paper
Chapter 11 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 11.1 - A bus travels the 100 miles between A and B at 50...Ch. 11.1 - Two cars A and B race each other down a straight...Ch. 11.1 - A snowboarder starts from rest at the top of a...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - The vertical motion of mass A is defined by the...Ch. 11.1 - A loaded railroad car is rolling at a constant...Ch. 11.1 - A group of hikers uses a GPS while doing a 40-mile...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - A girl operates a radio-controlled model car in a...Ch. 11.1 - The motion of a particle is defined by the...
Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Many car companies are performing research on...Ch. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - A piece of electronic equipment that is surrounded...Ch. 11.1 - A projectile enters a resisting medium at x = 0...Ch. 11.1 - Point A oscillates with an acceleration a =...Ch. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - Prob. 11.21PCh. 11.1 - Starting from x = 0 with no initial velocity, a...Ch. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Prob. 11.27PCh. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v = v0[1 sin(t/T)]....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - An airplane begins its take-off run at A with zero...Ch. 11.2 - A minivan is tested for acceleration and braking....Ch. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Prob. 11.45PCh. 11.2 - Prob. 11.46PCh. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - In the position shown, collar B moves to the left...Ch. 11.2 - Collar A starts from rest and moves to the right...Ch. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t = 0 and moves...Ch. 11.2 - Collars A and B start from rest, and collar A...Ch. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Prob. 11.58PCh. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - Prob. 11.60PCh. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - Prob. 11.62PCh. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.66PCh. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - The acceleration record shown was obtained for a...Ch. 11.3 - Prob. 11.71PCh. 11.3 - Prob. 11.72PCh. 11.3 - Prob. 11.73PCh. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - Prob. 11.75PCh. 11.3 - Prob. 11.76PCh. 11.3 - Prob. 11.77PCh. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - Prob. 11.83PCh. 11.3 - Prob. 11.84PCh. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Two road rally checkpoints A and B are located on...Ch. 11.3 - As shown in the figure, from t = 0 to t = 4 s, the...Ch. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Prob. 11.7CQCh. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - An airplane used to drop water on brushfires is...Ch. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine throws baseballs with...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - A pump is located near the edge of the horizontal...Ch. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - A golfer hits a golf ball with an initial velocity...Ch. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h =...Ch. 11.4 - Prob. 11.109PCh. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - Prob. 11.111PCh. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - A worker uses high-pressure water to clean the...Ch. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Prob. 11.120PCh. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Prob. 11.123PCh. 11.4 - Prob. 11.124PCh. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - Prob. 11.126PCh. 11.4 - Coal discharged from a dump truck with an initial...Ch. 11.4 - Conveyor belt A, which forms a 20 angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Prob. 11.130PCh. 11.4 - Prob. 11.131PCh. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - Prob. 11.9CQCh. 11.5 - A child walks across merry-go-round A with a...Ch. 11.5 - Prob. 11.133PCh. 11.5 - Determine the maximum speed that the cars of the...Ch. 11.5 - Human centrifuges are often used to simulate...Ch. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - A motorist starts from rest at point A on a...Ch. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - Pin A, which is attached to link AB, is...Ch. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - A nozzle discharges a stream of water in the...Ch. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - A projectile is fired from point A with an initial...Ch. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - 11.153 and 11.154 A satellite will travel...Ch. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Knowing that the radius of the earth is 6370 km,...Ch. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - The angular displacement of the robotic arm is...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Some parasailing systems use a winch to pull the...Ch. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - Prob. 11.167PCh. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - An airplane passes over a radar tracking station...Ch. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - 11.173 and 11.174 A particle moves along the...Ch. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - The motion of a particle on the surface of a right...Ch. 11.5 - Prob. 11.178PCh. 11.5 - The three-dimensional motion of a particle is...Ch. 11.5 - For the conic helix of Prob. 11.95, determine the...Ch. 11 - Students are testing their new drone to see if it...Ch. 11 - A drag racing car starts from rest and moves down...Ch. 11 - A driver is traveling at a speed of 72 km/h in car...Ch. 11 - The velocities of commuter trains A and B are as...Ch. 11 - Knowing that slider block A starts from rest and...Ch. 11 - A roller-coaster car is traveling at a speed of 20...Ch. 11 - A golfer hits a ball with an initial velocity of...Ch. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Sand is discharged at A from a conveyor belt and...Ch. 11 - The end point B of a boom is originally 5 m from...Ch. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. please provide handwritten solutionarrow_forwardA human-powered vehicle (HPV) team wants to model the acceleration during the 260-m sprint race (the first 60 m is called a flying start) using a= A- Cv2, where a is acceleration in m/s2 and v is the velocity in m/s. From wind tunnel testing, they found that C = 0.0012 m-1 . Knowing that the cyclist is going 100 km/h at the 260-meter mark, what is the value of A?arrow_forwardA muzzle-loading rifle fires 22LR bullets such that as they travel down the barrel of the rifle their speed is given by v = (-5.25 x 1o')t? + (2.40 x 10')t, where v is in meters per second and t is in seconds. The acceleration of the bullet just as it leaves the barrel is zero. (a) Determine the acceleration (in m/s2) and position (in m) of the bullet as a function of time when the bullet is in the barrel. (Use the following as necessary: t. Round all numerical coefficients to at least three significant figures. Do not include units in your answers. Assume that the position of the bullet at t = 0 is zero.) a(t) = m/s2 x(t) = m (b) Determine the length of time the bullet is accelerated (in s). 2.3*10**-3 (c) Find the speed at which the bullet leaves the barrel (in m/s). m/s (d) What is the length of the barrel (in m)? marrow_forward
- Q22. As shown in the image below, a motorcycle travels along circular path from point A to point B. Its decreases at at = − (C. s) m/s², where Cis a constant and s is the distance (in m) traveled along the path measured from point A. If the constant C is 0.002, and the motorcycle has speed of 32 m/s at point A, determine the magnitude of its total acceleration (in m/s2) at point B. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. .A Your Answer: Answer A 300 m n 90° Barrow_forwardDYNAMICS OF RIGID BODIES (RECTILINEAR MOTION WITH CONSTANT ACCELERATION) A body starts with a velocity of 3 m/s and moves in a straight line with a constant acceleration. If its velocity at the end of 5 seconds is 5.5 m/s, determine the following:(a)the uniform acceleration(b)distance travelled in 10 seconds.arrow_forwardThe resistance force due to water acting on a boat is proportional to its instantaneous speed, and is such that at 30 feet per second it is 90 pounds. If the boat and its only passenger together weigh 448 pounds and the motor can exert a constant force of 540 pounds in the direction of motion, determine the speed v (t) of the boat, in ft / s, depending on time t, in seconds , assuming that the boat starts from rest. Consider the acceleration of gravity as g = 32 ft / s²arrow_forward
- Starting from x= 0 with no initial velocity, a particle is given an acceleration where a and v are expressed in ft/s2 and ft/s, respectively. Determine (a) the position of the particle when v= 3 ft/s, (b) the speed and acceleration of the particle when x= 4 ft.arrow_forwardA motorist starts from rest at point A on a circular entrance ramp when t=0, increases the speed of her automobile at a constant rate and enters the highway at point B. Knowing that her speed continues to increase at the same rate until it reaches 67.41 mph at point C, determine themagnitude of the tangential acceleration (ft/s²) from A to B. Round off only on the final answer expressed in 3 decimal places. 450 ft -300 ft- C ...arrow_forwardAt a certain point in the reentry of the space shuttle into the earth's atmosphere, the total acceleration of the shuttle may be represented by two components. One component is the gravitational acceleration g = 9.60 m/s2 at this altitude. The second component equals 10.28 m/s² due to atmospheric resistance and is directed opposite to the velocity. The shuttle is at an altitude of 46.1 km and has reduced its orbital velocity of 28300 km/h to 16920 km/h in the direction 0 = 1.78°. For this instant, calculate the radius of curvature of the path and the rate i at which the speed is changing. Answers: p= v = i i km m/s²arrow_forward
- At a certain point in the reentry of the space shuttle into the earth's atmosphere, the total acceleration of the shuttle may be represented by two components. One component is the gravitational acceleration g = 9.67 m/s² at this altitude. The second component equals 10.66 m/s² due to atmospheric resistance and is directed opposite to the velocity. The shuttle is at an altitude of 49.6 km and has reduced its orbital velocity of 28300 km/h to 16160 km/h in the direction = 1.23°. For this instant, calculate the radius of curvature of the path and the rate i at which the speed is changing. Answers: p= i = i i km m/s²arrow_forwardAt a certain point in the reentry of the space shuttle into the earth's atmosphere, the total acceleration of the shuttle may be represented by two components. One component is the gravitational acceleration g = 9.56 m/s2 at this altitude. The second component equals 11.25 m/s² due to atmospheric resistance and is directed opposite to the velocity. The shuttle is at an altitude of 47.9 km and has reduced its orbital velocity of 28300 km/h to 14750 km/h in the direction = 1.88°. For this instant, calculate the radius of curvature of the path and the rate i at which the speed is changing. Answers: p= i = i FU km m/s²arrow_forwardTo be able to solve rectilinear problems with variable functions. A particle is moving along a straight line such that its speed is defined as v=(−s2) m/s, where s is in meters. If when s = 3 m, determine the velocity and acceleration as functions of time.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY