![Vector Mechanics for Engineers: Statics and Dynamics](https://www.bartleby.com/isbn_cover_images/9781259977251/9781259977251_largeCoverImage.jpg)
Concept explainers
Students are testing their new drone to see if it can safely deliver packages to different departments on campus. Position data can be approximated using the expressions x(t) = −0.0000225t4 + 0.003t3 + 0.01t2 and
(a)
![Check Mark](/static/check-mark.png)
Plot the path of the drone and find the duration (t) of the flight.
Answer to Problem 11.182RP
The duration (t) of the flight is
Explanation of Solution
Given information:
The x coordinate is defined by the relation as
The y coordinate is defined by the relation as
Calculation:
The x coordinate is defined by the relation:
The y coordinate is defined by the relation:
Calculate the duration (t) of the flight:
Equate equation (2) to zero.
General solution for
Calculate the x coordinated as time (t) 0 sec.
Substitute 0 for t in Equation (1).
Similarly calculate the x coordinate for time interval of
Tabulate the calculated values of x coordinate for time interval
Time (t)(sec) | x(m) |
0 | 0.00 |
5 | 0.61 |
10 | 3.78 |
15 | 11.24 |
20 | 24.40 |
25 | 44.34 |
30 | 71.78 |
35 | 107.11 |
40 | 150.40 |
45 | 201.36 |
50 | 259.38 |
55 | 323.49 |
60 | 392.40 |
65 | 464.49 |
70 | 537.78 |
75 | 609.96 |
80 | 678.40 |
Plot the graph for time (t) and x coordinate as in Figure (1).
Calculate the y coordinated as time (t) 0 sec.
Substitute 0 for t in equation (1).
Similarly calculate the y coordinate for time interval of
Tabulate the calculated values of y coordinate for time interval
Time (t)(sec) | y(m) |
0 | 0.00 |
5 | 22.84 |
10 | 87.87 |
15 | 185.19 |
20 | 300.00 |
25 | 414.81 |
30 | 512.13 |
35 | 577.16 |
40 | 600.00 |
45 | 577.16 |
50 | 512.13 |
55 | 414.81 |
60 | 300.00 |
65 | 185.19 |
70 | 87.87 |
75 | 22.84 |
80 | 0.00 |
Plot the graph for time (t) and y coordinate as in Figure (2).
Tabulate the x and y coordinates value as in Table (3):
x(m) | y(m) |
0.00 | 0.00 |
0.61 | 22.84 |
3.78 | 87.87 |
11.24 | 185.19 |
24.40 | 300.00 |
44.34 | 414.81 |
71.78 | 512.13 |
107.11 | 577.16 |
150.40 | 600.00 |
201.36 | 577.16 |
259.38 | 512.13 |
323.49 | 414.81 |
392.40 | 300.00 |
464.49 | 185.19 |
537.78 | 87.87 |
609.96 | 22.84 |
678.40 | 0.00 |
Plot the graph for coordinate x and y as in Figure (3).
Therefore, the duration (t) of the flight is
(b)
![Check Mark](/static/check-mark.png)
The maximum speed
Answer to Problem 11.182RP
The maximum speed
Explanation of Solution
Given information:
The x coordinate is defined by the relation as
The y coordinate is defined by the relation as
Calculation:
Differentiate equation (1) with respective to time (t).
Since, the rate of change of any coordinate with respect to time is equal to the velocity.
Differentiate equation (3) with respective to time (t).
Since, the rate of change of velocity with respect to time is equal to the acceleration.
Calculate the time (t) at which the velocity is maximum:
Equate the equation (4) to zero,
Solve the above quadratic equation for the roots (t),
The roots are -1.093 sec and 67.76 sec. Reject the negative root.
Calculate the maximum speed
Substitute 67.76 sec for t in equation (3).
Therefore, the maximum speed
(c)
![Check Mark](/static/check-mark.png)
The maximum altitude
Answer to Problem 11.182RP
The maximum altitude
Explanation of Solution
Given information:
The x coordinate is defined by the relation as
The y coordinate is defined by the relation as
Calculation:
Calculate the maximum altitude
Refer Figure 2, the maximum altitude 600m at time 40 sec.
Substitute 40 sec in equation (2).
Calculate the horizontal
Substitute 80 sec for t in equation (1).
Therefore, the maximum altitude
Want to see more full solutions like this?
Chapter 11 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- Note: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting thanks!. Question1: If the following container is 0.6m high, 1.2m wide and half full with water, determine the pressure acting at points A, B, and C if ax=2.6ms^-2.arrow_forwardPlease read the imagearrow_forwardChapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scoresarrow_forwardConsider a large 6-cm-thick stainless steel plate (k = 15.1 W/m-K) in which heat is generated uniformly at a rate of 5 × 105 W/m³. Both sides of the plate are exposed to an environment at 30°C with a heat transfer coefficient of 60 W/m²K. Determine the value of the highest and lowest temperature. The highest temperature is The lowest temperature is °C. °C.arrow_forwardSketch and explain a PV Diagram and a Temperature Entropy Diagram for a 4 stroke diesel engine please, please explain into detail the difference bewteen the two and referance the a diagram. Please include a sketch or an image of each diagramarrow_forwardDraw left view of the first orthographic projectionarrow_forwardSketch and Describe a timing diagram for a 2 stroke diesel engine emphasis on the 2 stroke as my last answer explained 4 stroke please include a diagram or sketch.arrow_forwardA 4 ft 200 Ib 1000 Ib.ft C 2 ft 350 Ib - за в 2.5 ft 150 Ib 250 Ib 375 300 Ib Replace the force system acting on the frame. shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forwardA continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ). ive submitted this question twice and have gotten two way different answers. looking for some help thanksarrow_forward15 kg of steel ball bearings at 100 ° C is immersed in 25 kg of water at 20 ° C . Assuming no loss of heat to or from the container, calculate the final temperature of the water after equilibrium has been attained.Specific heat of steel: 0.4857 kJ / kg / ° KSpecific heat of water: 4.187 kJ / kg / ° Karrow_forwardSketch and explain a PV Diagram and a Temperature Entropy Diagram for a 4 stroke diesel enginearrow_forwardA continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ).arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)