Repeat Prob. 10–98 assuming both the pump and the turbine are isentropic.
10–98 Consider a steam power plant that operates on a regenerative Rankine cycle and has a net power output of 150 MW. Steam enters the turbine at 10 MPa and 500°C and the condenser at 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pumps is 95 percent. Steam is extracted from the turbine at 0.5 MPa to heat the feedwater in an open feedwater heater. Water leaves the feedwater heater as a saturated liquid. Show the cycle on a T-s diagram, and determine (a) the mass flow rate of steam through the boiler and (b) the thermal efficiency of the cycle. Also, determine the exergy destruction associated with the regeneration process. Assume a source temperature of 1300 K and a sink temperature of 303 K.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Thermodynamics: An Engineering Approach
- Consider a steam power plant operating on a simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 650°C and is condensed in the condenser at a pressure of 15 kPa. Determine the Wnet (kJ/kg). (Use 2 decimal places for the final answer.)arrow_forwardConsider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500C and is cooled in the condenser at a pressure of 10 kPa. Assuming an isentropic efficiency of 85 percent for both the turbine and the pump, determine the specific enthalpy (kJ/kg) at the boiler outlet. (Use 2 decimal places for the final answer.)arrow_forwardConsider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500C and is cooled in the condenser at a pressure of 10 kPa. Determine the mass flow rate of the stream (kg/s). (Use 2 decimal places for the final answer.)arrow_forward
- Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500C and is cooled in the condenser at a pressure of 10 kPa. Assuming an isentropic efficiency of 85 percent for both the turbine and the pump, determine the quality ofthe steam at the turbine exit, the thermal efficiency of the cycle, specific enthalpy (kJ/kg) at the condenser, and actual Qin (kJ/kg).arrow_forwardConsider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500C and is cooled in the condenser at a pressure of 10 kPa. Assuming an isentropic efficiency of 85 percent for both the turbine and the pump, determine the actual Wp (kJ/kg). (Use 2 decimal places for the final answer.)arrow_forwardConsider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500C and is cooled in the condenser at a pressure of 10 kPa. Assuming an isentropic efficiency of 85 percent for both the turbine and the pump, determine the actual mass flow rate (kg/s) of the steam. (Use 2 decimal places for the final answer.)arrow_forward
- Consider a steam power plant operating on a simple Rankine cycle. Steam enters the turbine at 15 MPa and 650°C and is condensed in the condenser at a pressure of 15 kPa. Assuming an isentropic efficiency of 84% and 86% for the pump and turbine, respectively, determine the actual Qout (kJ/kg). (Use 2 decimal places for the final answer.)arrow_forwardConsider a 150-MW steam power plant that operates on a simple Rankine cycle. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at 10 kPa. Calculate the mass flow rate of steam produced by the boiler. Assume an isentropic efficiency of 87% for both the turbine and the pump.arrow_forwardConsider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500C and is cooled in the condenser at a pressure of 10 kPa. Assuming an isentropic efficiency of 85 percent for both the turbine and the pump, determine the actual specific enthalpy (kJ/kg) at the boiler inlet. (Use 2 decimal places for the final answer.)arrow_forward
- Required information Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 5 kPa. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the quality of the steam at the turbine exit. Use steam tables. The quality of the steam at the turbine exit isarrow_forwardConsider a steam power plant operating on a simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 650°C and is condensed in the condenser at a pressure of 15 kPa. Determine the Qout (kJ/kg). (Use 2 decimal places for the final answer.)arrow_forwardConsider a steam power plant that operates on the ideal reheat Rankine cycle. The plant maintains the boiler at 5000 kPa, the reheat section at 1200 kPa, and the condenser at 20 kPa. The mixture quality at the exit of both turbines is 96 percent. Determine the temperature at the inlet of each turbine and the cycle's thermal efficiency. Answers: 327°C, 481°C, 35.0 percent.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY