Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781260048766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 10.9, Problem 94RP
To determine
The rate at which bleed steam is required.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a simple ideal Brayton cycle with air as the working fluid. The pressure ratio of the cycle is 7.2, and the minimum and maximum temperatures are 300 K and 1350 K, respectively. Now the pressure ratio is doubled without changing the minimum and the maximum temperatures in the cycle. Assuming constant specific heats for air at room temperature;
show the initial process and process change in a T-s diagram;
calculate the change in the net work output per unit mass; and
determine the change in thermal efficiency of the cycle.
In a regenerative Rankine cycle. the closed feedwater heater with a pump as shown in the figure is arranged so that the water at state
5 is mixed with the water at state 2 to form a feedwater, which is a saturated liquid at 200 psia. Feedwater enters this heater at 350°F
and 200 psia with a flow rate of 3 lbm/s. The bleed steam is taken from the turbine at 160 psia and 400°F and enters the pump as a
saturated liquid at 160 psia. Determine the mass flow rate of the bleed steam required to operate this unit. Use steam tables.
Feedwater
Bleed steam
(from turbine)
1
—¬
The mass flow rate of the bleed steam required to operate the unit is
lbm/s.
In a Rankine cycle with reheating, the steam leaves the boiler at 2.5 MPa and 600 ºC and enters the high-pressure turbine where it expands to a pressure of 1 MPa to be then subjected to a reheating process from where it leaves at 1 MPa and 600 ° C. The steam at these conditions enters the low-pressure turbine and expands up to the condenser pressure of 50 kPa. The heat that is extracted in the condenser is 1500 kJ / s. If the adiabatic efficiency of the turbines and the pump is 95%, determine the total heat flow in kJ / s delivered to the boiler.
Chapter 10 Solutions
Thermodynamics: An Engineering Approach
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Why is excessive moisture in steam undesirable in...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Water enters the boiler of a steady-flow Carnot...Ch. 10.9 - What four processes make up the simple ideal...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...
Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - Compare the pressures at the inlet and the exit of...Ch. 10.9 - The entropy of steam increases in actual steam...Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle which uses water as...Ch. 10.9 - Consider a solar-pond power plant that operates on...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - Is there an optimal pressure for reheating the...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 43PCh. 10.9 - Prob. 44PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Cold feedwater enters a 200-kPa open feedwater...Ch. 10.9 - In a regenerative Rankine cycle. the closed...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - Prob. 64PCh. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 67PCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - What is the difference between cogeneration and...Ch. 10.9 - Prob. 71PCh. 10.9 - Prob. 72PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - An ideal cogeneration steam plant is to generate...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Prob. 80PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - A combined gassteam power cycle uses a simple gas...Ch. 10.9 - Reconsider Prob. 1083. An ideal regenerator is...Ch. 10.9 - Reconsider Prob. 1083. Determine which components...Ch. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Prob. 89PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Prob. 94RPCh. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 101RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 108RPCh. 10.9 - Prob. 109RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A Rankine steam cycle modified for reheat, a...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 118RPCh. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Prob. 126FEPCh. 10.9 - Prob. 127FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a combined gas-steam power plant. Water...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a steam power plant operating on the ideal Rankine cycle. Steam enters the turbine at 3 MPa and 350°C and is condensed in the condenser at a pressure of 10 kPa. Determine the thermal efficiency if steam is superheated to 600°C instead of 350°C in % Note: Include your T - S diagram on your solution. Clear and no Erasures.arrow_forwardRefrigerant-134a enters the compressor of a refrigerator at 140 kPa and -10°C at a rate of 0.3 m3/min and leaves at 1 MPa. The isentropic efficiency of the compressor is 78 percent. The refrigerant enters the throttling valve at 0.95 MPa and 30°C and leaves the evaporator as saturated vapor at -18.5°C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the power input to the compressor, (b) the rate of heat removal from the refrigerated space, and (c) the pressure drop andrate of heat gain in the line between the evaporator and the compressor. answers 1.88 kW, 7.11 kW, 1.72 kPa, 0.24 kWarrow_forwardA simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 3 MPa in the boiler and 30 kPa in the condenser. If the quality at the exit of the turbine cannot be less than 79 percent, what is the maximum thermal efficiency this cycle can have? Use steam tables. The maximum thermal efficiency isarrow_forward
- In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine at a pressure of 3.0 MPa and a temperature of 600 oC and exits the turbine with a dryness of 100 kPa and 0.8. By removing heat from the condenser to the surrounding environment, the water is provided to be saturated liquid at 100 kPa. In this case, what would be the amount of heat released from the Condenser to the surrounding environment per unit mass?arrow_forwardConsider a steam power plant operating on the ideal Rankine cycle. Steam enters the turbine at 3 MPa and 350°C and is condensed in the condenser at a pressure of 10 kPa. Determine the thermal efficiency of this powerplant (%) Note: Include your T - S diagram on your solution. Clear and no Erasures.arrow_forwardConsider a reheat Rankine cycle in which the steam enters the high-pressure turbine at 7 MPa and 500°C. After the expansion process in the high-pressure turbine to 400 kPa, the steam is reheated to 500°C in the boiler and then expanded in the low-pressure turbine to 7.5 kPa. Assume that saturated liquid enters the pump, and pumping and expansion processes are isentropic. Calculate the thermal efficiency of the cycle, in %. Cevabınız 45.76 şeklinde olmalıdır. Lütfen 0.4576 gibi yazmayınız. Your answer should be like 45.76. Please, do not write 0.4576.arrow_forward
- An r-134a refrigerator operates a simple vapor compression cycle (SVCC). The evaporatoroperates at -10 °C, while the condenser operates at 1 MPa. R-134a flows around the system at 10 g/s.a. Graph the cycle in a P-h diagram and calculate the temperature at the exit of the compressor, assuming it is 100% isentropicallyefficient.b. Calculate the power required by the compressor (in W) and the cooling effect of the refrigerator (in kW) c. Compute for the COP of the system. What is its percent difference from the reversible efficiency?arrow_forwardConsider a 150-MW steam power plant that operates on a simple Rankine cycle. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at 10 kPa. Calculate the mass flow rate of steam produced by the boiler. Assume an isentropic efficiency of 87% for both the turbine and the pump.arrow_forwardExhaust gases from the turbine of a simple Brayton cycle are quite hot and may be used for other thermal purposes. One proposed use is generating saturated steam at 110°C from water at 30°C in a boiler. This steam will be distributed to several buildings on a college campus for space heating. A Brayton cycle with a pressure ratio of 6 is to be used for this purpose. Plot the power produced, the flow rate of produced steam, and the maximum cycle temperature as functions of the rate at which heat is added to the cycle. The temperature at the turbine inlet is not to exceed 2000°C.arrow_forward
- An ideal reheat Rankine cycle with water as the working fluid operatesthe boiler at 15,500 kPa, the reheater at 2000 kPa, and the condenser at 100 kPa. The temperature is 450°C at the entrance of the high-pressure and low-pressure turbines. The mass flow rate through the cycle is 1.74 kg/s. Determine the power used by pumps, the power produced by the cycle, the rate of heat transfer in the reheater, and the thermal efficiency of this system.arrow_forwardThe net work output and the thermal efficiency for the Carnot and the simple ideal Rankine cycles with steam as the working fluid are to be calculated and compared. Steam enters the turbine in both cases at 5 MPa as a saturated vapor, and the condenser pressure is 50 kPa. In the Rankine cycle, the condenser exit state is saturated liquid and in the Carnot cycle, the boiler inlet state is saturated liquid. Draw the T-s diagrams for both cycles.arrow_forwardWater enters the turbine of an ideal Rankine cycle as superheated vapor at 10 MPa and 600°C. If the condenser pressure is 10 kPa, Calculate the thermal efficiency of the system.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY