A binary geothermal power plant uses geothermal water at 160°C as the heat source. The plant operates on the simple Rankine cycle with isobutane as the working fluid. Heat is transferred to the cycle by a heat exchanger in which geothermal liquid water enters at 160°C at a rate of 555.9 kg/s and leaves at 90°C. Isobutane enters the turbine at 3.25 MPa and 147°C and leaves at 79.5°C and 410 kPa. Isobutane is condensed in an air-cooled condenser and pumped to the heat exchanger pressure. Assuming the pump to have an isentropic efficiency of 90 percent, determine (a) the isentropic efficiency of the turbine, (b) the net power output of the plant, and (c) the thermal efficiency of the plant.
The properties of isobutane are h1 = 273.01 kJ/kg, v1 = 0.001842 m3/kg, h3 = 761.54 kJ/kg, h4 = 689.74 kJ/kg, h4s = 670.40 kJ/kg. Take the specific heat of geothermal water to be cp = 4.258 kJ/kg·°C.
FIGURE P10–28
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
- consider a simple ideal Rankine cycle with water as the working fluid. The boiler operates at 2 MPa, while the condenser operates at 75 kPa.Determine the minimum temperature at the turbine inlet such that the quality of the steam in the turbine outlet is at least 90%What is the power output at these conditions, if the mass flow of the water is 5 kg/s?arrow_forwardThe net power of a steam power plant operating on the simple ideal Rankine cycle is 30.5 MW. Water vapor enters the turbine at a pressure of 7 MPa and a temperature of 500 °C, expanding to a condenser pressure of 10kPa in the turbine. The steam is condensed in the condenser by cooling with water supplied from a lake. The flow rate of the lake water is 1950 kg/s. Take the adiabatic efficiency of the pump and turbine as 87%. Show the cycle in the T-s diagram. a) The thermal efficiency of the cycle, b) The flow rate of the steam circulating in the cycle, c) Calculate the temperature rise of the cooling water.arrow_forwardConsider a 150-MW steam power plant that operates on a simple Rankine cycle. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at 10 kPa. Calculate the mass flow rate of steam produced by the boiler. Assume an isentropic efficiency of 87% for both the turbine and the pump.arrow_forward
- A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at 6 MPa and 450°C and is condensed in the condenser at 20 kPa. Steam is extracted from the turbine at 0.4 MPa to heat the feedwater in closed feedwater heater. Assume that the feedwater leaves the heater at the condensation temperature of the extracted steam and that the extracted steam leaves the heater as a saturated liquid and is pumped to the line carrying the feedwater. Show the cycle on a T-s diagram, and determine: (a) the net work output per kg of steam flowing through the boiler, and (b) the thermal efficiency of the cycle.arrow_forwardA steam power plant operates on a reheated Rankine cycle. Steam enters the high pressure turbine at a pressure of 12.5 MPa and a temperature of 550 ̊C, with a flow rate of 7.7 kg/s and exits at a pressure of 2 MPa. The steam is then heated to 450 C at constant pressure before being expanded in the low pressure turbine and exits the condenser as a saturated liquid at 10 kPa. Since the isentropic efficiencies of the turbine and the pump are 85 percent and 90 percent, respectively; a) degree of dryness, b) net power, c) thermal efficiency of the cyclearrow_forwardI need the answer as soon as possiblearrow_forward
- please Solve this problem and show the full solution. Thank you very mucharrow_forwardExample: Consider a steam power plant operating on the ideal regenerative Rankine cycle with one open feedwater heater. Steam enters the turbine at 15 MPa and 600°C and is condensed in the condenser at a pressure of 10 kPa. Some steam leaves the turbine at a pressure of 1.2 MPa and enters the open feedwater heater. Determine the fraction of steam extracted from the turbine and the thermal efficiency of the cycle. 9in Boiler 4-1 15 MPa Pump II Open FWH ↓ 1.2 MPa 1.2 MPa Pump I 15 MPa 600°C Turbine 1.2 MPa 6- Condenser 10 kPa @ Wturb,out 10 kPa goutarrow_forwardConsider a 150-MW steam power plant that operates on a simple Rankine cycle. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at 10 kPa. Calculate the thermal efficiency of the plant. Assume an isentropic efficiency of 87% for both the turbine and the pumparrow_forward
- Consider a 150-MW steam power plant that operates on a simple Rankine cycle. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at 10 kPa. Calculate the plant monthly consumption of coal if its heating value is 26,450 kJ/kg and the boiler has an efficiency of 90%. Assume an isentropic efficiency of 87% for both the turbine and the pump.arrow_forwardA steam power plant operates on the Rankine cycle with reheat. Steam enters the high pressure turbine at a pressure of 12.5 MPa and a temperature of 550 °C, with a flow rate of 7.7 kg/s and exits at a pressure of 2 MPa. The steam is then heated to 450 ̊C at constant pressure before being expanded in the low pressure turbine and exits the condenser as a saturated liquid at 10 kPa. Since the isentropic efficiencies of the turbine and the pump are 85 percent and 90 percent, respectively; Find a) degree of dryness, b) net power, c) thermal efficiency of the cycle.arrow_forwardIn a Rankine cycle with reheating, the steam leaves the boiler at 2.5 MPa and 600 ºC and enters the high pressure turbine where it expands to a pressure of 1 MPa to be then subjected to a reheating process from where it leaves at 1 MPa and 600 ° C. The steam at these conditions enters the low pressure turbine and expands up to the condenser pressure of 50 kPa. The heat that is extracted in the condenser is 1500 kJ / s. If the adiabatic efficiency of the turbines and the pump is 95%, determine the total heat flow in kJ / s delivered to the boiler.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY