THERMODYNAMICS: ENG APPROACH LOOSELEAF
9th Edition
ISBN: 9781266084584
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.9, Problem 47P
How do the following quantities change when the simple ideal Rankine cycle is modified with regeneration? Assume the mass flow rate through the boiler is the same.
Turbine work output: (a) increases, (b) decreases, (c) remains the same
Heat supplied: (a) increases, (b) decreases, (c) remains the same
Heat rejected: (a) increases, (b) decreases, (c) remains the same
Moisture content at turbine exit: (a) increases, (b) decreases, (c) remains the same
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please provide explanation
1. Why is excessive moisture in steam undesirable in steam turbines? What is the highest
moisture content allowed?
2. Why is the Carnot cycle not a realistic model for steam power plants?
3. Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the
effect of lowering the condenser pressure on
Pump work input: (a) increases, (b) decreases,
(c) remains the same
(a) increases, (b) decreases,
(c) remains the same
(a) increases, (b) decreases,
(c) remains the same
(a) increases, (b) decreases,
(c) remains the same
(a) increases, (b) decreases,
(c) remains the same
(a) increases, (b) decreases,
Turbine work
output:
Heat supplied:
Heat rejected:
Cycle efficiency:
Moisture content
at turbine exit: (c) remains the same
4. Consider a simple ideal Rankine cycle with fixed boiler and condenser pressures. What
is the effect of superheating the steam to a higher temperature on
Pump work input: (a) increases, (b) decreases,
(c) remains the same
(a) increases, (b)…
* The system diagram and a number of the state properties are given below for a
regenerative Rankine cycle. The isentropic efficiency of both turbines is 85% and the isentropic efficiency
of the pump is 90%. Using the provided state data below, detemine the:
(a) Percent of diverted flow after the first turbine, y
(b) The thermal efficiency of the cycle, ncyc
(c) The entropy production rate at the closed feedwater heater per mass flow of steam entering the
first turbine "FWH, in [kJ/kg-K]
State T ("C) p (kPa) h (kJ/kg)
s (kJ/kg-K)
480
10000
3323
6.531
172.4
700
2781
6.749
2s
164.9
2686
6.531
|3[a -»
3
36.16
6.
2183
7.09
(y)
3s
36.16
2078
6.749
Steam
4
36.16
151.5
0.5208
Condenser
generator
5
36.69
162.6
0.5244
(1)
0.5208
1.98
5s
36.43
161.5
Pump
6.
164.9
702.3
7
164.9
697
1.992
|t
8
36.16
697
2.285
Closed
feedwater
heater
Trap
(y)
(v)
Chapter 10 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Why is excessive moisture in steam undesirable in...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Water enters the boiler of a steady-flow Carnot...Ch. 10.9 - What four processes make up the simple ideal...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...
Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - Compare the pressures at the inlet and the exit of...Ch. 10.9 - The entropy of steam increases in actual steam...Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle which uses water as...Ch. 10.9 - Consider a solar-pond power plant that operates on...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - Is there an optimal pressure for reheating the...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 43PCh. 10.9 - Prob. 44PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Cold feedwater enters a 200-kPa open feedwater...Ch. 10.9 - In a regenerative Rankine cycle. the closed...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - Prob. 64PCh. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 67PCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - What is the difference between cogeneration and...Ch. 10.9 - Prob. 71PCh. 10.9 - Prob. 72PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - An ideal cogeneration steam plant is to generate...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Prob. 80PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - A combined gassteam power cycle uses a simple gas...Ch. 10.9 - Reconsider Prob. 1083. An ideal regenerator is...Ch. 10.9 - Reconsider Prob. 1083. Determine which components...Ch. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Prob. 89PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Prob. 94RPCh. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 101RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 108RPCh. 10.9 - Prob. 109RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A Rankine steam cycle modified for reheat, a...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 118RPCh. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Prob. 126FEPCh. 10.9 - Prob. 127FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a combined gas-steam power plant. Water...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Known: The data provided at the principal states of a thermal power plant. Assume an Ideal Rankine Cycle. (a) Explain about the general theory about the thermal power plant? (b) Formulate to determine the work done by the pump, and also formulate the work done by the turbine? (c) Evaluate the amount of heat supplied to the steam, and also determine the thermal efficiency of the cycle? Conditions: The steam enters into the turbine at a Pressure of 24 bar & 400°C and the exhaust steam is enter into the condenser at a pressure of 0.1 bar. Scheme and given data: Boiler 24 bar & 400°C Turbine 0.1 bar Condenserarrow_forwardThe single-stage expansion process of an ideal Brayton cycle without regeneration is replaced by a multistage expansion process with reheating between the same pressure limits. As a result of this modification, (a) Does the turbine work increase, decrease, or remain the same? (b) Does the back work ratio increase, decrease, or remain the same? (c) Does the thermal efficiency increase, decrease, or remain the same?arrow_forward2) A steam power plant operates according to the simple ideal Rankine cycle. The pressure limits of the cycle are 9 MPa and 10 kPa, and the flow of water eirculating in the cycle is 60 kg/s. It is required that the moisture content of the steam at the turbine outlet does not fall below 90 percent. Accordingly, calculate (a) the lowest possible turbine inlet temperature, (b) the heat supplied to the cycle, and (c) the thermal efficiency of the cycle by showing the cycle on a T-s diagram with saturated vapor and saturated liquid curves,.arrow_forward
- Nonearrow_forwardb and c onlyarrow_forwardA steam power plant operates on the basis of Rankine cycle between the pressure limits of 10 MPa in the boiler and 15 kPa in the condenser. The turbine inlet temperature is 4250C. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. (a) Calculate the mass flow rate through the boiler, the power produced by the turbine, the rate of heat supply in the boiler, and the thermal efficiency (b) How much error is caused in the thermal efficiency if the power required by the pump were completely neglected? c) fill the table stream 1 2 3 state T(C) P(kPa) H(kj/kg)arrow_forward
- I need the answer as soon as possiblearrow_forwardJustify why the Rankine cycle is preferred over the Carnot cycle in steam production plants aroundthe world. Include diagrams to aid in your explanation.arrow_forwardIn a Rankine cycle, 9.1 kg/min of steam enters the turbine at 2.5 MPa saturated and leaves at 50 kPa. If the pump and turbine efficiency i s72.7% and 80.8% respectively. @2.5 MPa hf = 962.11 kJ/kg sf = 2.5547 kJ/kg hg = 2803.1 kJ/kg sg = 6.2575 kJ/kg-k @50 kPa sf = 1.0910 kJ/kgK hf = 340.49 vf = 1.03 L/kg sfg = 6.5029 kJ/kg-k hfg = 2305.4 Find the following: a.) Net work of the actual cycle in kJ/hr PS. Input your answers in 5 decimal places. Show your unit analysis. SUBJECT: Thermodynamics 2arrow_forward
- Evaluate the modifications made to the basic Rankine cycle to improve the overall efficiency of steampower plants. Include the reheat and regenerative cycles, along with economizers and pre-heaters.Discuss both the advantages and disadvantages of these modifications. Support your analysis withdiagrams.arrow_forwardIn an ideal reheat cycle, the steam throttled condition is 8 MPa and 480 degree C. the steam is then reheated to MPa and 460 degree C. the turbine exhaust is 60 degree C. The required values of some state point properties are tabulated below. 4. Calculate the total turbine work of the cycle.arrow_forwardefficiency, and (c) the combined engine efficiency. (3) Steam at 5.2 MPa, 400°C expands in a Rankine turbine to 0.036MP.. For 136 kg/s of steam, determine the work, the thermal efficiency, and the steam rate (a) fot the cycle(b) for the turbine, (c) for an actual turbine with the same specifications, the brake steam rate is 4.80 kg/kwh ang the driven electric generator has an efficiency of 93%, Find brake thermal efficiency, brake engine efficiency, combined work, and quality or temperature of exhaust steam. (4) A turbine receives steam at 10 MPa, 600°C and exhaust it at 0.2 MPa, (a) for the ideal Rankine enginearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY