Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.9, Problem 25P
A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 50 kPa. At the entrance to the turbine, the temperature is 450°C. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the rate at which heat is added in the boiler, the power required to operate the pumps, the net power produced by the cycle, and the thermal efficiency.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The fallowing question is from a reeds book on applied heat i am studying. Although the answer is provided, im struggling to understand the whole answer and the formulas and the steps theyre using. Also where some ov the values such as Hg and Hf come from in part i for example. Please explain step per step in detail thanks
In an NH, refrigerator, the ammonia leaves the evaporatorand enters the cornpressor as dry saturated vapour at 2.68 bar,it leaves the compressor and enters the condenser at 8.57 bar with50" of superheat. it is condensed at constant pressure and leavesthe condenser as saturated liquid. If the rate of flow of the refrigerantthrough the circuit is 0.45 kglmin calculate
(i) the compressorpower,
(ii) the heat rejected to the condenser cooling water in kJ/s,an (iii) the refrigerating effect in kJ/s.
From tables page 12, NH,:2.68 bar, hg= 1430.58.57 bar, hf = 275.1 h supht 50" = 1597.2Mass flow of refrigerant--- - - 0.0075 kgls 60Enthalpy gain per kg of refrigerant in…
state the formulas for calculating work done by gas
Exercises
Find the solution of the following Differential Equations
1) y" + y = 3x²
3)
"+2y+3y=27x
5) y"+y=6sin(x)
7) y"+4y+4y = 18 cosh(x)
9) (4)-5y"+4y = 10 cos(x)
11) y"+y=x²+x
13) y"-2y+y=e*
15) y+2y"-y'-2y=1-4x³
2) y"+2y' + y = x²
4) "+y=-30 sin(4x)
6) y"+4y+3y=sin(x)+2 cos(x)
8) y"-2y+2y= 2e* cos(x)
10) y+y-2y=3e*
12) y"-y=e*
14) y"+y+y=x+4x³ +12x²
16) y"-2y+2y=2e* cos(x)
Chapter 10 Solutions
Thermodynamics: An Engineering Approach
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Why is excessive moisture in steam undesirable in...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Water enters the boiler of a steady-flow Carnot...Ch. 10.9 - What four processes make up the simple ideal...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...
Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - Compare the pressures at the inlet and the exit of...Ch. 10.9 - The entropy of steam increases in actual steam...Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle which uses water as...Ch. 10.9 - Consider a solar-pond power plant that operates on...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - Is there an optimal pressure for reheating the...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 43PCh. 10.9 - Prob. 44PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Cold feedwater enters a 200-kPa open feedwater...Ch. 10.9 - In a regenerative Rankine cycle. the closed...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - Prob. 64PCh. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 67PCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - What is the difference between cogeneration and...Ch. 10.9 - Prob. 71PCh. 10.9 - Prob. 72PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - An ideal cogeneration steam plant is to generate...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Prob. 80PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - A combined gassteam power cycle uses a simple gas...Ch. 10.9 - Reconsider Prob. 1083. An ideal regenerator is...Ch. 10.9 - Reconsider Prob. 1083. Determine which components...Ch. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Prob. 89PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Prob. 94RPCh. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 101RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 108RPCh. 10.9 - Prob. 109RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A Rankine steam cycle modified for reheat, a...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 118RPCh. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Prob. 126FEPCh. 10.9 - Prob. 127FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a combined gas-steam power plant. Water...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The state of stress at a point is σ = -4.00 kpsi, σy = 16.00 kpsi, σ = -14.00 kpsi, Try = 11.00 kpsi, Tyz = 8.000 kpsi, and T = -14.00 kpsi. Determine the principal stresses. The principal normal stress σ₁ is determined to be [ The principal normal stress σ2 is determined to be [ The principal normal stress σ3 is determined to be kpsi. kpsi. The principal shear stress 71/2 is determined to be [ The principal shear stress 7½ is determined to be [ The principal shear stress T₁/, is determined to be [ kpsi. kpsi. kpsi. kpsi.arrow_forwardRepeat Problem 28, except using a shaft that is rotatingand transmitting a torque of 150 N * m from the left bearing to the middle of the shaft. Also, there is a profile keyseat at the middle under the load. (I want to understand this problem)arrow_forwardProb 2. The material distorts into the dashed position shown. Determine the average normal strains &x, Ey and the shear strain Yxy at A, and the average normal strain along line BE. 50 mm B 200 mm 15 mm 30 mm D ΕΙ 50 mm x A 150 mm Farrow_forward
- Prob 3. The triangular plate is fixed at its base, and its apex A is given a horizontal displacement of 5 mm. Determine the shear strain, Yxy, at A. Prob 4. The triangular plate is fixed at its base, and its apex A is given a horizontal displacement of 5 mm. Determine the average normal strain & along the x axis. Prob 5. The triangular plate is fixed at its base, and its apex A is given a horizontal displacement of 5 mm. Determine the average normal strain &x along the x' axis. x' 45° 800 mm 45° 45% 800 mm 5 mmarrow_forwardAn airplane lands on the straight runaway, originally travelling at 110 ft/s when s = 0. If it is subjected to the decelerations shown, determine the time t' needed to stop the plane and construct the s -t graph for the motion. draw a graph and show all work step by steparrow_forwarddny dn-1y dn-1u dn-24 +a1 + + Any = bi +b₂- + +bnu. dtn dtn-1 dtn-1 dtn-2 a) Let be a root of the characteristic equation 1 sn+a1sn- + +an = : 0. Show that if u(t) = 0, the differential equation has the solution y(t) = e\t. b) Let к be a zero of the polynomial b(s) = b₁s-1+b2sn−2+ Show that if the input is u(t) equation that is identically zero. = .. +bn. ekt, then there is a solution to the differentialarrow_forward
- B 60 ft WAB AB 30% : The crane's telescopic boom rotates with the angular velocity w = 0.06 rad/s and angular acceleration a = 0.07 rad/s². At the same instant, the boom is extending with a constant speed of 0.8 ft/s, measured relative to the boom. Determine the magnitude of the acceleration of point B at this instant.arrow_forwardThe motion of peg P is constrained by the lemniscate curved slot in OB and by the slotted arm OA. (Figure 1) If OA rotates counterclockwise with a constant angular velocity of 0 = 3 rad/s, determine the magnitude of the velocity of peg P at 0 = 30°. Express your answer to three significant figures and include the appropriate units. Determine the magnitude of the acceleration of peg P at 0 = 30°. Express your answer to three significant figures and include the appropriate units. 0 (4 cos 2 0)m² B Aarrow_forward5: The structure shown was designed to support a30-kN load. It consists of a boom AB with a 30 x 50-mmrectangular cross section and a rod BC with a 20-mm-diametercircular cross section. The boom and the rod are connected bya pin at B and are supported by pins and brackets at A and C,respectively.1. Calculate the normal stress in boom AB and rod BC,indicate if in tension or compression.2. Calculate the shear stress of pins at A, B and C.3. Calculate the bearing stresses at A in member AB,and in the bracket.arrow_forward
- 4: The boom AC is a 4-in. square steel tube with a wallthickness of 0.25 in. The boom is supported by the 0.5-in.-diameter pinat A, and the 0.375-in.-diameter cable BC. The working stresses are 25ksi for the cable, 18 ksi for the boom, and 13.6 ksi for shear in the pin.Neglect the weight of the boom.1. Calculate the maximum value of P (kips) based on boom compression and the maximum value of P (kips) based on tension in the cable.2. Calculate the maximum value of P (kips) based on shear in pin.arrow_forward3: A steel strut S serving as a brace for a boat hoist transmits a compressive force P = 54 kN to the deck of a pier as shown in Fig. STR-08. The strut has a hollow square cross section with a wall thickness t =12mm and the angle θ between the strut and the horizontal is 40°. A pin through the strut transmits the compressive force from the strut to two gusset plates G that are welded to the base plate B. Four anchor bolts fasten the base plate to the deck. The diameter of the pin is 20mm, the thickness of the gusset plates is 16mm, the thickness of the base plate is 8mm, and the diameter of the anchor bolts is 12mm. Disregard any friction between the base plate and the deck.1. Determine the shear stress in the pin, in MPa and the shear stress in the anchor bolts, in MPa.2. Determine the bearing stress in the strut holes, in MPa.arrow_forward1. In the figure, the beam, W410x67, with 9 mm web thicknesssubjects the girder, W530x109 with 12 mm web thickness to a shear load,P (kN). 2L – 90 mm × 90 mm × 6 mm with bolts frame the beam to thegirder.Given: S1 = S2 = S5 = 40 mm; S3 = 75 mm; S4 = 110 mmAllowable Stresses are as follows:Bolt shear stress, Fv = 125 MPaBolt bearing stress, Fp = 510 MPa1. Determine the allowable load, P (kN), based on the shearcapacity of the 4 – 25 mm diameter bolts (4 – d1) and calculate the allowable load, P (kN), based on bolt bearing stress on the web of the beam.2. If P = 450 kN, determine the minimum diameter (mm) of 4 – d1based on allowable bolt shear stress and bearing stress of thebeam web.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY