Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.9, Problem 130FEP
Pressurized feedwater in a steam power plant is to be heated in an ideal open feedwater heater that operates at a pressure of 2 MPa with steam extracted from the turbine. If the enthalpy of the feedwater is 252 kJ/kg and the enthalpy of the extracted steam is 2810 kJ/kg, the mass fraction of steam extracted from the turbine is
- (a) 10 percent
- (b) 14 percent
- (c) 26 percent
- (d) 36 percent
- (e) 50 percent
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a steam power plant, dry saturated steam enters the turbine at a pressure of 40 bar and
exits the turbine at a pressure of 0.1 bar. The turbine has an isentropic efficiency of 90 %, and
the condensate pump has an isentropic efficiency of 85 %. The water/steam mass flow rate
through the plant is 200 kg/s, and all changes in kinetic and potential energy are negligible.
Using this information, determine:
a) The power output of the turbine, in MW.
b) The power required by the pump, in MW.
Steam enters the turbine of a simple vapor power plant with a pressure of 10 MPa and temperature of 580°C and expands adiabatically to 6 kPa.
Determine (a) temperature at the turbine exit. Also calculate the (b) work input in the pump (in kJ/kg) and the (c) cycle thermal efficiency, in %.
Use g = 9.81 m/s2 or 32.2 ft/s2 , T(K)=T(°C)+273 and T(R)=T(°F)+460, where applicable.
4. Steam enters the condenser of a steam power plant at 20000 kPa and a quality of 95
percent with a mass flow rate of 20 Mg/h. It is to be cooled by water from a nearby river
in circulating the water through the tubes within the condenser. To prevent thermal
pollution, the river water is not allowed to experience a temperature rise above 10°C. If
the steam is to leave the condenser as saturated liquid at 20000 Pa, determine the mass
flow rate of the cooling water required.
Chapter 10 Solutions
Thermodynamics: An Engineering Approach
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Why is excessive moisture in steam undesirable in...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Water enters the boiler of a steady-flow Carnot...Ch. 10.9 - What four processes make up the simple ideal...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...
Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - Compare the pressures at the inlet and the exit of...Ch. 10.9 - The entropy of steam increases in actual steam...Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle which uses water as...Ch. 10.9 - Consider a solar-pond power plant that operates on...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - Is there an optimal pressure for reheating the...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 43PCh. 10.9 - Prob. 44PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Cold feedwater enters a 200-kPa open feedwater...Ch. 10.9 - In a regenerative Rankine cycle. the closed...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - Prob. 64PCh. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 67PCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - What is the difference between cogeneration and...Ch. 10.9 - Prob. 71PCh. 10.9 - Prob. 72PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - An ideal cogeneration steam plant is to generate...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Prob. 80PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - A combined gassteam power cycle uses a simple gas...Ch. 10.9 - Reconsider Prob. 1083. An ideal regenerator is...Ch. 10.9 - Reconsider Prob. 1083. Determine which components...Ch. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Prob. 89PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Prob. 94RPCh. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 101RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 108RPCh. 10.9 - Prob. 109RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A Rankine steam cycle modified for reheat, a...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 118RPCh. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Prob. 126FEPCh. 10.9 - Prob. 127FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a combined gas-steam power plant. Water...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A Carnot engine contains 2.00 mol of neon gas as its working substance. It operates with a hotreservoir temperature of 500 °C: Using a heat input of 500 J, the engine lifts a 15.0 kg weight 2.00 m per cycle.(a) Draw a PV-diagram for this cycle. Determine the temperature and pressure of the gas at the end of eachstep of the Carnot cycle. (b) Determine the temperature of the cold reservoir. (c) For each step, determine Q,W, and AU. (d) How much heat energy does this engine waste per cycle? (e) Calculate the efficiency of theengine using n=-W/Qy and using n=1-Td/TH. Compare the two values. lowest pressure achieved in the engine is 1 bar.arrow_forwardSteam enters the turbine of a cogeneration plant at 6 MPa and 550 degrees C . One-third of the steam is extracted from the turbine at 1400 kPa pressure for process heating. The remaining steam continues to expand to 20 kPa. The extracted steam is then condensed and mixed with feedwater at constant pressure and the mixture is pumped to the boiler pressure of 6 MPa The mass flow rate of steam through the boiler is 30 kg/s. Disregarding any pressure drops and heat losses in the piping, and assuming the turbine and the pump to be isentropic, determine (a) the net power produced(b) the utilization factor of the plant, (c) the exergy destruction associated with the process heating, and (d ) the entropy generation associated with the process in the boiler. Assuming a source temperature of 1000 K and a sink temperature of 298 Karrow_forwardSteam enters the turbine of a cogeneration plant at 6 MPa and 550 degrees * C . One-third of the steam is extracted from the turbine at 1400 kPa pressure for process heating. The remaining steam continues to expand to 20 kPa. The extracted steam is then condensed and mixed with feedwater at constant pressure and the mixture is pumped to the boiler pressure of 6 MPaThe mass flow rate of steam through the boiler is 30 kg/s. Disregarding any pressure drops and heat losses in the piping, and assuming the turbine and the pump to be isentropic, determine (a) the net power produced(b) the utilization factor of the plant, (c) the exergy destruction associated with the process heating, and (d ) the entropy generation associated with the process in the boiler. Assuming a source temperature of 1000 K and a sink temperature of 298 Karrow_forward
- I need this Thermodynamics question solved in 1 hour, because I need to study for an exam todayarrow_forwardParrow_forwardASJDBNLAHBADJBSFJDB Answer in kJ/kg Suppose that a power plant operates on a Carnot vapor cycle and uses water as the working substance. Saturated liquid water enters the boiler at a pressure of 10 MPa and leaves as saturated water vapor. Then it enters the steam turbine and leaves as saturated mixture at 20 kPa. Determine the heat added to the working substance in the boiler.arrow_forward
- A steady-state gas turbine is using air as the working fluid has shaft power output of 55 MW. Air enters the turbine at 300 K and leaves at 600 K and 30 m/s. The air is first compressed by adding a compression power of 15 MW. Then air receives 173 MW as heat input from the combustor. Determine the mass flow rate of air in kg/s.arrow_forwardIn a steam power plant, the condenser pressure is 10 kPa. The turbine and pump isentropic efficiencies are both 85 %. Draw the schematic and T-S diagrams. Label the points by setting point 1 at the condenser outlet, point 2 at the pump outlet, point 3 at the boiler outlet, and point 4 at the turbine outlet. Use the label 2a and 4a for the points due to the isentropic efficiency of the pump and turbine, respectively. Use 2 decimal places for the enthalpy and other energies in solving and for the final answers. For the steam quality (x) and entropy (s), use 4 decimal places in solving. For the specific volume, use 6 decimal places. The pressure and the temperature of steam that enters the turbine are 4 MPa and 700 oC Determine the following: (INPUT YOUR ANSWERS ON THE BLANK SPACES PROVIDED.) Enthalpy at point 1 in kJ/kg = Enthalpy at point 2 in kJ/kg = Enthalpy at point 3 in kJ/kg = Enthalpy at point 4 in kJ/kg = Actual Enthalpy at point 2a in kJ/kg = Actual Enthalpy at point 4a…arrow_forward1. The heat produced in a boiler is transferred from the combustion products to the water. While the temperature of the combustion products decreases from 1100 °C to 550 °C, the pressure remains constant at 0.1 MPa. The average specific heat at constant pressure of the combustion products is 1.09 kJ/kg.K. The water enters the system at 0.8 MPa and 150 °C, and leaves at 0.8 MPa and 250 °C. Determine the second law efficiency and the irreversibility for each kilogram of water vaporized for this process. Note: This is a thermodynamics course question. Please provide a solution that is clear and quick.arrow_forward
- In a steam power plant, steam enters the turbine at 2.5 MPa and 500 C. The condenser pressure is 15 KPa. The turbine and pump isentropic efficiencies are 94 % and 89 %, respectively. Determine the actual net work in kJ/kg. In solving, use two decimal places for the enthalpies/energies while four decimal places for the steam quality. For the final answer, use two decimal placesarrow_forwardSteam is delivered to an turbine at 5.4 MPa and 600°C. Before condensation at 31°C, steam is extracted for feed water heating at 0.60Mpa. For an ideal cycle: h2 = kJ/kg h3 = kJ/kg h5 = kJ/kg h7 = kJ/kg the fractional amount of steam extracted = Wnet = kJ/kg eth =arrow_forwardSuppose that a power plant operates on a Carnot vapor cycle and uses water as the working substance. Saturated liquid water enters the boiler at a pressure of 10 MPa and leaves as saturated water vapor. Then it enters the steam turbine and leaves as saturated mixture at 20 kPa. Determine the heat added to the working substance in the boiler. ANSWER SHOULD BE IN KJ/KGarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY