MECHANICS OF MATERIALS
11th Edition
ISBN: 9780137605521
Author: HIBBELER
Publisher: RENT PEARS
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.7, Problem 60P
A material is subjected to plane stress. Express the maximum shear stress theory of failure in terms of σx, σy, and τxy. Assume that the principal stresses are of different algebraic signs.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The yield stress for a zirconium-magnesium alloy is sY = 15.3 ksi. If a machine part is made of this material and a critical point in the material is subjected to in-plane principal stresses s1 and s2 = -0.5s1, determine the magnitude of s1 that will cause yielding according to the maximum shear stress theory.
Solve it correctly.
1. We can visualize the factor of safety for an arbitrary stress using a surface in principal stress space. For
a ductile material that yields according to a von Mises criterion with a yield stress σy, sketch the von
Mises surface in σ₁ - 02 space and sketch the stress surface that corresponds to a factor of safety FoS =
2. For a brittle material that yields according to a max normal (Rankine) criterion with a tensile strength
Gyt and a compressive strength σvc = 20yt, sketch the yield surface and the surface that corresponds
to a factor of safety FoS = 2.
Chapter 10 Solutions
MECHANICS OF MATERIALS
Ch. 10.3 - Prove that the sum of the normal strains in...Ch. 10.3 - The state of strain at the point on the arm has...Ch. 10.3 - The state of strain at the point on the leaf of...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Determine the equivalent state of strain on an...Ch. 10.3 - Determine the equivalent state of strain which...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain, which...Ch. 10.3 - Solve Prob.103 using Mohrs circle. 103. The state...Ch. 10.5 - The strain at point A on the bracket has...
Ch. 10.5 - Determine (a) the principal strains at A, (b) the...Ch. 10.6 - For the case of plane stress, show that Hookes law...Ch. 10.6 - to develop the strain tranformation equations....Ch. 10.6 - Determine the associated principal stresses at the...Ch. 10.6 - Determine the applied load P. What is the shear...Ch. 10.6 - If a load of P = 3 kip is applied to the A-36...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - Solve Prob. 1061 using the maximum distortion...Ch. 10.7 - Solve Prob.1063 using the maximum distortion...Ch. 10.7 - Prob. 70PCh. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - If a machine part is made of titanium (TI-6A1-4V)...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - Prob. 82PCh. 10.7 - If the yield stress for steel is Y = 36 ksi,...Ch. 10.7 - Prob. 84PCh. 10.7 - The state of stress acting at a critical point on...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10 - In the case of plane stress, where the in-plane...Ch. 10 - The plate is made of material having a modulus of...Ch. 10 - If the material is machine steel having a yield...Ch. 10 - Determine if yielding has occurred on the basis of...Ch. 10 - The 60 strain rosette is mounted on a beam. The...Ch. 10 - Use the strain transformation equations to...Ch. 10 - If the strain gages a and b at points give...Ch. 10 - Use the strain-transformation equations and...Ch. 10 - Use the strain transformation equations to...Ch. 10 - Specify the orientation of the corresponding...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A nozzle at A discharges water with an initial velocity of 36 ft/s at an angle with the horizontal. Determine ...
Vector Mechanics For Engineers
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
Assume a telephone signal travels through a cable at two-thirds the speed of light. How long does it take the s...
Electric Circuits. (11th Edition)
Write a summary list of the problem-solving steps identified in the chapter, using your own words.
BASIC BIOMECHANICS
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
What is an uninitialized variable?
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The rod has a diameter of 40 mm. It is subjected to the force system F₁ = 1900 N, Fy = 700 N, F₂ = 900 N. (Figure 1) Figure F₁ Fy 300 mm 100 N-m F₂ 100 mm Part A Determine the normal stress that acts at point B. Express your answer to three significant figures and include the appropriate units. Enter negative value in the case of compression and positive value in the case of tension. OB= Part B (TB)Ty Part C = μА Determine the shear stress (TB)zy that acts at point B. Express your answer to three significant figures and include the appropriate units. Value (TB) Iz = μA Value Units μA Value Units Determine the shear stress (TB)zz that acts at point B. Express your answer to three significant figures and include the appropriate units. ? Units ? ?arrow_forwardIn a plane stress condition, the components of stress at a point are sigma_{x}= 20MPa , sigma_{y} = 80MPa , Ty = 40 MPa . What is the maximum shear stress (in MPa) at the point?arrow_forwardIf the principal stresses are of opposite signs, then failure occurs in the plane. True or false?arrow_forward
- For a steel rod with a circular cross section with a diameter of D = 20 mm, the following is required: 1. Draw a diagram of the longitudinal force 2. Draw a diagram of normal stresses 3. Determine the total elongation of the rod if Е = 2∙10^5 MPa When calculating, take: а = 2 m, b =1.2 m, F=10 кN - The point of application of force! The work must be done on one sheet of A4 paper, which must show: - Using the method of sections to determine the longitudinal forces in the rod. - Draw a diagram of longitudinal forces N - Determination of normal stresses based on the constructed plot of longitudinal forces. - Draw diagram a normal stresses - Determination of the full extension of the rodarrow_forwardFor a steel rod with a circular cross section with a diameter of D = 20 mm, the following is required: 1. Draw a diagram of the longitudinal force 2. Draw a diagram of normal stresses 3. Determine the total elongation of the rod if Е = 2∙10^5 MPa When calculating, take: а = 2 m, b =1.2 m, F=10 кN - The point of application of force! The work must be done on one sheet of A4 paper, which must show: - Using the method of sections to determine the longitudinal forces in the rod. - Draw a diagram of longitudinal forces N - Determination of normal stresses based on the constructed plot of longitudinal forces. - Draw diagram a normal stresses - Determination of the full extension of the rodarrow_forwardFor a certain metal the strength coefficient K = 600 MPa and the strain hardening exponent n =0.20. During a forming operation, the final true strain that the metal experiences ε = 0.73.Determine the flow stress at this strain and the average flow stress that the metal experiencedduring the operation.arrow_forward
- In a thin plate, the state of stress prevails according to the figure. Calculate the principal stresses and their directions (using both equations and Mohr's stress circle). Show the result in a figure. σx = 40 MPa; σy = 50 ; MPa and τxy = 30 MPa The question should contain clear solutions and be presented according to the following structure: Given, to find, Solution and Answer.arrow_forwardSolve clearly and neatlyarrow_forwardThe supporting wheel on a scaffold is held in place on the leg using a 4-mm-diameter pin as shown. (Figure 1) Figure P 1 of 1 Part A If the wheel is subjected to a normal force of P = 3.3 kN, determine the average shear stress developed in the pin. Neglect friction between the inner scaffold puller leg and the tube used on the wheel. Express your answer to three significant figures and include the appropriate units. μА Tavg= 65.652 N mm² Submit Previous Answers Request Answer Provide Feedback ? X Incorrect; Try Again; 4 attempts remainingarrow_forward
- Suppose that σ = 330 psi and Try = 150 psi in (Figure 1). Figure Part D Specify the orientation of the principal stress. Take the positive direction of rotation counterclockwise. Express your answer in degrees to three significant figures. Op₁= Part E OF 0₂ = ΑΣΦΙΚΗ vec Specify the orientation of the maximum in-plane shear stress. Take the positive direction of rotation counterclockwise. Express your answer in degrees to three significant figures. 0/ —| ΑΣΦ 11 | vec ? ? oarrow_forwardAt a point in the cross-section of an engineering component an element is subject to the following stresses: σx =100MPa σy =45MPa τxy = -50MPa Construct a Mohr’s Stress Circle and hence determine: (a) The Principal Stresses (σ1 & σ2) and the Directions of the Principal Planes (φ1 & φ2) (b) The Maximum Shear Stress (τmax) (c) Find the Normal Stress (σn) acting on a plane at 40 degs anticlockwise from the y-axisarrow_forwardThe three principal stresses at a given point are σ1 =60 MPa, σ2 =−100 MPa, σ3 =−10 MPa. If the material has a yield stress of 250 MPa, estimate the factor of safety against yielding using (i) the maximum shear stress theory and (ii) von Mises’ theory.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY