MECHANICS OF MATERIALS
11th Edition
ISBN: 9780137605521
Author: HIBBELER
Publisher: RENT PEARS
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 6RP
Use the strain transformation equations to determine the equivalent in-plane strains on an element oriented at an angle of θ = 45° clockwise from the original position. Sketch the deformed element within the x–y plane due to these strains.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. Find the relationships between strain components in the polar coordinate and
strain components in the rectangular coordinate.
The state of strain in a plane element is Ex = -300 x 10-6 , Ey= 450 x 10-6, and
Yxy = 275 x 10-6.
(a)
Use the strain transformation equations to determine the equivalent
strain components on an element oriented at an angle of 0 = 30°
counterclockwise from the original position.
(b)
Sketch the deformed element due to these strains within the x-y
plane.
The state of strain at the point on the bracket has components Px = 350(10-6), Py = -860(10-6),gxy = 250(10-6). Use the strain transformation equations to determine the equivalent in-plane strains on an element oriented at an angle of u = 45° clockwise from the original position. Sketch the deformed element within the x–y plane due to these strains.
Chapter 10 Solutions
MECHANICS OF MATERIALS
Ch. 10.3 - Prove that the sum of the normal strains in...Ch. 10.3 - The state of strain at the point on the arm has...Ch. 10.3 - The state of strain at the point on the leaf of...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Determine the equivalent state of strain on an...Ch. 10.3 - Determine the equivalent state of strain which...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain, which...Ch. 10.3 - Solve Prob.103 using Mohrs circle. 103. The state...Ch. 10.5 - The strain at point A on the bracket has...
Ch. 10.5 - Determine (a) the principal strains at A, (b) the...Ch. 10.6 - For the case of plane stress, show that Hookes law...Ch. 10.6 - to develop the strain tranformation equations....Ch. 10.6 - Determine the associated principal stresses at the...Ch. 10.6 - Determine the applied load P. What is the shear...Ch. 10.6 - If a load of P = 3 kip is applied to the A-36...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - Solve Prob. 1061 using the maximum distortion...Ch. 10.7 - Solve Prob.1063 using the maximum distortion...Ch. 10.7 - Prob. 70PCh. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - If a machine part is made of titanium (TI-6A1-4V)...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - Prob. 82PCh. 10.7 - If the yield stress for steel is Y = 36 ksi,...Ch. 10.7 - Prob. 84PCh. 10.7 - The state of stress acting at a critical point on...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10 - In the case of plane stress, where the in-plane...Ch. 10 - The plate is made of material having a modulus of...Ch. 10 - If the material is machine steel having a yield...Ch. 10 - Determine if yielding has occurred on the basis of...Ch. 10 - The 60 strain rosette is mounted on a beam. The...Ch. 10 - Use the strain transformation equations to...Ch. 10 - If the strain gages a and b at points give...Ch. 10 - Use the strain-transformation equations and...Ch. 10 - Use the strain transformation equations to...Ch. 10 - Specify the orientation of the corresponding...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
The job of the _____ is to fetch instructions, carry out the operations commanded by the instructions, and prod...
Starting Out With Visual Basic (8th Edition)
How does a computers main memory differ from its auxiliary memory?
Java: An Introduction to Problem Solving and Programming (8th Edition)
This optional Google account security feature sends you a message with a code that you must enter, in addition ...
SURVEY OF OPERATING SYSTEMS
What is an uninitialized variable?
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q4 A three strain gages have been attached directly to a piston used to raise a medical chair, the strain gages give strains as Ea = 80 µ , Eb = 60 µ and Ec = 20 u . Determine the principal strains and the principal strain directions for the given set of strains. And Compute the strain in a direction -30° (clockwise) with the x axis. 45 Pumparrow_forwardThe state of strain at a point on the bracket has components of Px = 150(10-6), Py = 200(10-6), gxy = -700(10-6). Use the strain transformation equations and determine the equivalent in-plane strains on an element oriented at an angle of u = 60° counterclockwise from the original position. Sketch the deformed element within the x–y plane due to these strains.arrow_forwardSolve it pleasearrow_forward
- (b) A differential element on the bracket as shown in Figure Q1 is subjected to plane strain that has the following components: ex = 150µ, ey = 200μ , γχν = -700μ. By using the strain transformation equations, determine:- The equivalent in-plane strains on an element oriented at an angle 0 = 60° counterclockwise from the original position. (ii) Sketch the deformed element within the x' – y' plane due to these strains. (iii) The stresses on the oriented planes in (i) where the value of elasticity, E = 200 GPa and Poisson's ratio, v = 0.32. (iv) Give your comments on those stresses in (iii) in terms of elastic limit/failure if the material's yield strength in tension/compression is 250 MPa and in shear is 90 MPa.arrow_forwardThe state of strain at the point on the leaf of the caster assembly has components of P x = -400(10-6), Py = 860(10-6), and gxy = 375(10-6). Use the strain transformation equations to determine the equivalent in-plane strains on an element oriented at an angle of u = 30 counterclockwise from the original position. Sketch the deformed element due to these strains within the x–y plane.arrow_forwardThe state of plane strain on an element is represented by the following components: Ex =D340 x 10-6, ɛ, = , yxy Ey =D110 x 10-6, 3D180 x10-6 ху Draw Mohr's circle to represent this state of strain. Use Mohrs circle to obtain the principal strains and principal plane.arrow_forward
- please solve with all stepsarrow_forwardA material is subjected to the following strain system,ex=200x10-6, ey=-56x10-6,yxy=230x10-6. Using graphical method, determine A. The principal strains B. The directions of principal strain axes C. The linear strain on an axis inclined at 50o counter clockwise to the direction of ex Given that young's modulus for the material is 207GN/m2 and the poisson's ratio is 0.27, determine the principal stressesarrow_forwardThe state of strain at the point on the spanner wrench has components of Px = 260(10-6), P y = 320(10-6), and gxy = 180(10-6). Use the strain transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within the x–y plane.arrow_forward
- The strain components, ex= 940 micro strain, ey= -360 micro strain and yxy=830micro strain are given for a point in body subjected to plane strain. Determine; a. Magnitude of the principal strains b. The direction of the principal strain axes c. The maximum in-plane shear strain. Confirm your answer by means of Mohr's circle of strain and determine the linear strain on an axis inclined at 20 degrees clockwise to the direction of eyarrow_forwardFor the state of a plane strain with εx, εy and γxy components: (a) construct Mohr’s circle and (b) determine the equivalent in-plane strains for an element oriented at an angle of 30° clockwise. εx = 255 × 10-6 εy = -320 × 10-6 γxy = -165 × 10-6arrow_forwardThree readings are obtained from an equiangular strain gage rosette mounted on a free and unloaded surface of a part. Determine the magnitude of the principal strains and their orientation with respect to the 0° gage. Check the results with a Mohr circle.Assume The three known strains are all linear strainsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Lec21, Part 5, Strain transformation; Author: Mechanics of Materials (Libre);https://www.youtube.com/watch?v=sgJvz5j_ubM;License: Standard Youtube License