Beginning Statistics, 2nd Edition
Beginning Statistics, 2nd Edition
2nd Edition
ISBN: 9781932628678
Author: Carolyn Warren; Kimberly Denley; Emily Atchley
Publisher: Hawkes Learning Systems
Question
Book Icon
Chapter 10.7, Problem 18E
To determine

To find:

To show that there is a relationship between age( by college classification) and destination.

Expert Solution & Answer
Check Mark

Answer to Problem 18E

Solution:

There is no relationship between age( by college classification) and destination.

Explanation of Solution

The following table represents the random sample of college Spring Break vacationers produces the results is,

Observed Sample of 192 College Students
Beach Mountains City Home Total
Freshman 19 2 7 24 52
Sophomore 15 4 3 20 42
Junior 18 1 9 19 47
Senior 21 6 4 20 51
Total 73 13 23 83 192

Step 1: To state the null and alternative hypotheses.

Let the null hypothesis be that relationship between age( by college classification) and destination are independent of one another.

Null hypothesis: H0: Age( by college classification) and destination are independent.

Alternative hypothesis: Ha: Age( by college classification) and destination are dependent.

Step 2: To determine which distribution to use for the test statistic, and state the level of significance.

To determine there is a relationship between age( by college classification) and destination. Since we assume that the necessary condition that have been met. So, use the chi-square test for this association and the level of siginificance is α=0.05.

Step 3: To calculate the test statistic.

First calculate the expected value for each cell in the contingency table.

Formula for calculating expected value of a frequency in a contingency table:

The expected value of the frequency for the ith possible outcome in a contingency table is given by

Ei=(rowtotal)(columntotal)n

Where n is the sample size.

From the above table represent the value of n is 192.

The expected values of for age( by college classification) and Beach is given below,

Ebeachandfreshman=73×52192=3796192=19.7708Ebeachandsophomore=73×42192=3066192=15.9688Ebeachandjunior=73×47192=3431192=17.8698Ebeachandsenior=73×51192=3723192=19.3906

The expected values of for age( by college classification) and mountains is given below,

Emountainandfreshman=13×52192=676192=3.5208Emontainandsophomore=13×42192=546192=2.8438

Emountainandjunior=13×47192=611192=3.1823Emountainandsenior=13×51192=663192=3.4531

The expected values of for age( by college classification) and city is given below,

Ecityandfreshman=23×52192=1196192=6.2292Ecityandsophomore=23×42192=966192=5.0313Ecityandjunior=23×47192=1081192=5.6302Ecityandsenior=23×51192=1173192=6.1094

The expected values of for age( by college classification) and home is given below,

Ehomeandfreshman=83×52192=3796192=22.4792Ehomeandsophomore=83×42192=3486192=18.1563

Ehomeandjunior=83×47192=3901192=20.3177Ehomeandsenior=83×51192=4233192=22.0469

The table represents the contingency table of expected values by using the above formula is given below,

  Expected values        
  Beach Mountains City Home Total
Freshman 19.7708 3.5208 6.2292 22.4792 52
Sophomore 15.9688 2.8438 5.0313 18.1563 42
Junior 17.8698 3.1823 5.6302 20.3177 47
Senior 19.3906 3.4531 6.1094 22.0469 51
Total 73 13 23 83 192

Formula for calculating test statistic for a Chi-Square test for association:

The test statistic for a chi-square test for association is given below,

χ2=i=1n(OiEi)2Ei

Where Oi, is the observed frequency for the ith possible outcome and Ei is the expected frequency for the ith possible outcome and n is the sample size.

From the above table represent the value of n is 192.

The test statistic, χ2, for a chi- square test for association using the above contingency tables is given below,

χ2=i=1n(OiEi)2Ei={ (OfreshmanEbeach)2Ebeach+(OfreshmanEmountain)2Emountain+(OfreshmanEcity)2Ecity+(OfreshmanEhome)2Ehome+(OsophomoreEbeach)2Ebeach+(OsophomoreEmountain)2Emountain+(OsophomoreEcity)2Ecity+(OsophomoreEhome)2Ehome+(OjuniorEbeach)2Ebeach+(OjuniorEmountain)2Emountain+(OjuniorEcity)2Ecity+(OjuniorEhome)2Ehome+(OseniorEbeach)2Ebeach+(OseniorEmountain)2Emountain+(OseniorEcity)2Ecity+(OseniorEhome)2Ehome

The following table represents the chi square test statistic value s given below,

Observed Expected OiEi (OiEi)2 (OiEi)2Ei
19 19.7708 -0.7708 0.5942 0.0301
15 15.9688 -0.9688 0.9385 0.0588
18 17.8698 0.1302 0.0170 0.0009
21 19.3906 1.6094 2.5901 0.1336
2 3.5208 -1.5208 2.3129 0.6569
4 2.8438 1.1563 1.3369 0.4701
1 3.1823 -2.1823 4.7624 1.4965
6 3.4531 2.5469 6.4866 1.8785
7 6.2292 0.7708 0.5942 0.0954
3 5.0313 -2.0313 4.1260 0.8201
9 5.6302 3.3698 11.3555 2.0169
4 6.1094 -2.1094 4.4495 0.7283
24 22.4792 1.5208 2.3129 0.1029
20 18.1563 1.8438 3.3994 0.1872
19 20.3177 -1.3177 1.7364 0.0855
20 22.0469 -2.0469 4.1897 0.1900
χ2=i=1n(OiEi)2Ei=8.9517

So, the value of test statistic, χ2, for a chi- square test for association is 8.9517.

Step 4:

Draw a conclusion and interpret the decision.

Degrees of freedom in a Chi-square test for association:

In a chi-square test for association the number of degrees of freedom for the chi-square distribution of the test statistic is given by,

df=(R1)(C1)

Where R is the number of rows of the data in the contingency table (not including the row total and C is the number of columns of data in the contingency table (not including the column totals).

Rejection Region for Chi-Square Test for Association:

Reject the null hypothesis, H0, if χ2χα2.

From the given information R = 4 and C = 4.

Substitute the above values in the formula of degrees of freedom to get the following,

df=(R1)(C1)=(41)(41)=(3)(3)=9

The number of degrees of freedom for this test is 9.

Use the level of significance of α=0.05 to find the critical value χ0.052 of the chi-square distribution with df = 9 in order to make a decision about the null hypothesis.

Use the “Area to the right of the critical value χ2” table to get the following,

χ0.052=16.9190

The test statistic value is χ2=8.9517.

Comparing the test statistic and critical value to get the following,

8.9517<16.919χ2<χ0.0052. Therefore, we fail to reject the null hypothesis this concludes that age and destination are independent.

So, there is no relationship between age( by college classification) and destination.

Final statement:

There is no relationship between age( by college classification) and destination.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 10 Solutions

Beginning Statistics, 2nd Edition

Ch. 10.1 - Prob. 11ECh. 10.1 - Prob. 12ECh. 10.1 - Prob. 13ECh. 10.1 - Prob. 14ECh. 10.1 - Prob. 15ECh. 10.1 - Prob. 16ECh. 10.1 - Prob. 17ECh. 10.1 - Prob. 18ECh. 10.1 - Prob. 19ECh. 10.1 - Prob. 20ECh. 10.1 - Prob. 21ECh. 10.1 - Prob. 22ECh. 10.1 - Prob. 23ECh. 10.1 - Prob. 24ECh. 10.1 - Prob. 25ECh. 10.1 - Prob. 26ECh. 10.1 - Prob. 27ECh. 10.1 - Prob. 28ECh. 10.1 - Prob. 29ECh. 10.1 - Prob. 30ECh. 10.2 - Prob. 1ECh. 10.2 - Prob. 2ECh. 10.2 - Prob. 3ECh. 10.2 - Prob. 4ECh. 10.2 - Prob. 5ECh. 10.2 - Prob. 6ECh. 10.2 - Prob. 7ECh. 10.2 - Prob. 8ECh. 10.2 - Prob. 9ECh. 10.2 - Prob. 10ECh. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - Prob. 13ECh. 10.2 - Prob. 14ECh. 10.2 - Prob. 15ECh. 10.2 - Prob. 16ECh. 10.2 - Prob. 17ECh. 10.2 - Prob. 18ECh. 10.2 - Prob. 19ECh. 10.2 - Prob. 20ECh. 10.2 - Prob. 21ECh. 10.2 - Prob. 22ECh. 10.2 - Prob. 23ECh. 10.2 - Prob. 24ECh. 10.2 - Prob. 25ECh. 10.2 - Prob. 26ECh. 10.2 - Prob. 27ECh. 10.2 - Prob. 28ECh. 10.2 - Prob. 29ECh. 10.2 - Prob. 30ECh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Prob. 3ECh. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - Prob. 6ECh. 10.3 - Prob. 7ECh. 10.3 - Prob. 8ECh. 10.3 - Prob. 9ECh. 10.3 - Prob. 10ECh. 10.3 - Prob. 11ECh. 10.3 - Prob. 12ECh. 10.3 - Prob. 13ECh. 10.3 - Prob. 14ECh. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Prob. 17ECh. 10.3 - Prob. 18ECh. 10.3 - Prob. 19ECh. 10.4 - Prob. 1ECh. 10.4 - Prob. 2ECh. 10.4 - Prob. 3ECh. 10.4 - Prob. 4ECh. 10.4 - Prob. 5ECh. 10.4 - Prob. 6ECh. 10.4 - Prob. 7ECh. 10.4 - Prob. 8ECh. 10.4 - Prob. 9ECh. 10.4 - Prob. 10ECh. 10.5 - Prob. 1ECh. 10.5 - Prob. 2ECh. 10.5 - Prob. 3ECh. 10.5 - Prob. 4ECh. 10.5 - Prob. 5ECh. 10.5 - Prob. 6ECh. 10.5 - Prob. 7ECh. 10.5 - Prob. 8ECh. 10.5 - Prob. 9ECh. 10.5 - Prob. 10ECh. 10.5 - Prob. 11ECh. 10.5 - Prob. 12ECh. 10.5 - Prob. 13ECh. 10.5 - Prob. 14ECh. 10.5 - Prob. 15ECh. 10.6 - Prob. 1ECh. 10.6 - Prob. 2ECh. 10.6 - Prob. 3ECh. 10.6 - Prob. 4ECh. 10.6 - Prob. 5ECh. 10.6 - Prob. 6ECh. 10.6 - Prob. 7ECh. 10.6 - Prob. 8ECh. 10.6 - Prob. 9ECh. 10.6 - Prob. 10ECh. 10.6 - Prob. 11ECh. 10.6 - Prob. 12ECh. 10.6 - Prob. 13ECh. 10.6 - Prob. 14ECh. 10.6 - Prob. 15ECh. 10.6 - Prob. 16ECh. 10.6 - Prob. 17ECh. 10.6 - Prob. 18ECh. 10.6 - Prob. 19ECh. 10.6 - Prob. 20ECh. 10.6 - Prob. 21ECh. 10.6 - Prob. 22ECh. 10.6 - Prob. 23ECh. 10.6 - Prob. 24ECh. 10.6 - Prob. 25ECh. 10.6 - Prob. 26ECh. 10.7 - Prob. 1ECh. 10.7 - Prob. 2ECh. 10.7 - Prob. 3ECh. 10.7 - Prob. 4ECh. 10.7 - Prob. 5ECh. 10.7 - Prob. 6ECh. 10.7 - Prob. 7ECh. 10.7 - Prob. 8ECh. 10.7 - Prob. 9ECh. 10.7 - Prob. 10ECh. 10.7 - Prob. 11ECh. 10.7 - Prob. 12ECh. 10.7 - Prob. 13ECh. 10.7 - Prob. 14ECh. 10.7 - Prob. 15ECh. 10.7 - Prob. 16ECh. 10.7 - Prob. 17ECh. 10.7 - Prob. 18ECh. 10.7 - Prob. 19ECh. 10.7 - Prob. 20ECh. 10.CR - Prob. 1CRCh. 10.CR - Prob. 2CRCh. 10.CR - Prob. 3CRCh. 10.CR - Prob. 4CRCh. 10.CR - Prob. 5CRCh. 10.CR - Prob. 6CRCh. 10.CR - Prob. 7CRCh. 10.CR - Prob. 8CRCh. 10.CR - Prob. 9CRCh. 10.CR - Prob. 10CRCh. 10.CR - Prob. 11CRCh. 10.CR - Prob. 12CRCh. 10.CR - Prob. 13CRCh. 10.CR - Prob. 14CRCh. 10.CR - Prob. 15CRCh. 10.P - Prob. 1PCh. 10.P - Prob. 2PCh. 10.P - Prob. 3PCh. 10.P - Prob. 4PCh. 10.P - Prob. 5PCh. 10.P - Prob. 6PCh. 10.P - Prob. 7PCh. 10.P - Prob. 8PCh. 10.P - Prob. 9PCh. 10.P - Prob. 10P
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman