Beginning Statistics, 2nd Edition
Beginning Statistics, 2nd Edition
2nd Edition
ISBN: 9781932628678
Author: Carolyn Warren; Kimberly Denley; Emily Atchley
Publisher: Hawkes Learning Systems
Question
Book Icon
Chapter 10.7, Problem 13E
To determine

To find:

To show that there is a relationship between grades and the combination of subject and gender

Expert Solution & Answer
Check Mark

Answer to Problem 13E

Solution:

There is a relationship between grades and the combination of particular subject and gender for student in the state.

Explanation of Solution

The following table represents the random sample of relationship between grades and the combination of particular subject and gender for student in the state is,

Observed Sample of 440 Students
A B C D F Total
Math, Female 12 30 44 15 9 110
Math, Male 5 24 37 36 8 110
English, Female 16 41 39 10 4 110
English, Male 10 40 35 19 6 110
Total 43 135 155 80 27 440

Step 1: To state the null and alternative hypotheses.

Let the null hypothesis be that grades and combination of subjects and gender are independent of one another.

Null hypothesis: H0: Grades and combination of subjects and gender are independent.

Alternative hypothesis: Ha: Grades and combination of subjects and gender are dependent.

Step 2: To determine which distribution to use for the test statistic, and state the level of significance.

To determine there is a relationship between grades and the combination of particular subject and gender for student in the state. Since we assume that the necessary condition that have been met. So, use the chi-square test for this association and the level of siginificance is α=0.005.

Step 3: To calculate the test statistic.

First calculate the expected value for each cell in the contingency table.

Formula for calculating expected value of a frequency in a contingency table:

The expected value of the frequency for the ith possible outcome in a contingency table is given by

Ei=(rowtotal)(columntotal)n

Where n is the sample size.

From the above table represent the value of n is 146.

The expected values of for the Grade A and the combination of subjects and gender is given below,

EGrade A and Math, Female =43×110440=4730440=10.75EGrade A and Math, Male =43×110440=4730440=10.75EGrade A and English, Female =43×110440=4730440=10.75EGrade A and English, Male =43×110440=4730440=10.75

The expected values of for the Grade B and the combination of subjects and gender is given below,

EGrade B and Math, Female =135×110440=14850440=33.75EGrade B and Math, Male =135×110440=14850440=33.75

EGrade B and English, Female =135×110440=14850440=33.75EGrade B and English, Male =135×110440=14850440=33.75

The expected values of for the Grade C and the combination of subjects and gender is given below,

EGrade C and Math, Female =155×110440=17050440=38.75EGrade C and Math, Male =155×110440=17050440=38.75

EGrade C and English, Female =155×110440=17050440=38.75EGrade C and English, Male =155×110440=17050440=38.75

The expected values of for the Grade D and the combination of subjects and gender is given below,

EGrade D and Math, Female =80×110440=8800440=20EGrade D and Math, Male =80×110440=8800440=20EGrade D and English, Female =80×110440=8800440=20EGrade D and English, Male =80×110440=8800440=20

The expected values of for the Grade A and the combination of subjects and gender is given below,

EGrade F and Math, Female =27×110440=29.70440=6.75EGrade F and Math, Male =27×110440=29.70440=6.75

EGrade F and English, Female =27×110440=29.70440=6.75EGrade F and English, Male =27×110440=29.70440=6.75

The table represents the contingency table of expected values by using the above formula is given below,

  Expected values          
  A B C D F Total
Math, Female 10.75 33.75 38.75 20 6.75 110
Math, Male 10.75 33.75 38.75 20 6.75 110
English, Female 10.75 33.75 38.75 20 6.75 110
English, Male 10.75 33.75 38.75 20 6.75 110
Total 43 135 155 80 27 440

Formula for calculating test statistic for a Chi-Square test for association:

The test statistic for a chi-square test for association is given below,

χ2=i=1n(OiEi)2Ei

Where Oi, is the observed frequency for the ith possible outcome and Ei is the expected frequency for the ith possible outcome and n is the sample size.

From the above table represent the value of n is 440.

The test statistic, χ2, for a chi- square test for association using the above contingency tables is given below,

χ2=i=1n(OiEi)2Ei={(OAEMath,Female)2EMath,Female+(OBEMath,Female)2EMath,Female+(OCEMath,Female)2EMath,Female+(ODEMath,Female)2EMath,Female+(OFEMath,Female)2EMath,Female+(OAEMath,Male)2EMath,Male+(OBEMath,Male)2EMath,Male+(OCEMath,Male)2EMath,Male+(ODEMath,Male)2EMath,Male+(OFEMath,Male)2EMath,Female+(OAEEnglish,Female)2EEnglish,Female+(OBEEnglish,Female)2EEnglish,Female+(OCEEnglish,Female)2EEnglish,Female+(ODEEnglish,Female)2EEnglish,Female+(OFEEnglish,Female)2EEnglish,Female+(OAEEnglish,Male)2EEnglish,Male+(OBEEnglish,Male)2EEnglish,Male+(OCEEnglish,Male)2EEnglish,Male+(ODEEnglish,Male)2EEnglish,Male+(OFEEnglish,Male)2EEnglish,Male

The following table represents the chi square test statistic value s given below,

Observed Expected  OiEi  (OiEi)2  (OiEi)2Ei
12 10.75 1.25 1.5625 0.14535
5 10.75 -5.75 33.0625 3.07558
16 10.75 5.25 27.5625 2.56395
10 10.75 -0.75 0.5625 0.05233
30 33.75 -3.75 14.0625 0.41667
24 33.75 -9.75 95.0625 2.81667
41 33.75 7.25 52.5625 1.55741
40 33.75 6.25 39.0625 1.15741
44 38.75 5.25 27.5625 0.71129
37 38.75 -1.75 3.0625 0.07903
39 38.75 0.25 0.0625 0.00161
35 38.75 -3.75 14.0625 0.3629
15 20 -5 25 1.25
36 20 16 256 12.8
10 20 -10 100 5
19 20 -1 1 0.05
9 6.75 2.25 5.0625 0.75
8 6.75 1.25 1.5625 0.23148
4 6.75 -2.75 7.5625 1.12037
6 6.75 -0.75 0.5625 0.08333
        χ2=i=1n(OiEi)2Ei=34.2254

So, the value of test statistic, χ2, for a chi- square test for association is 34.2254.

Step 4:

Draw a conclusion and interpret the decision.

Degrees of freedom in a Chi-square test for association:

In a chi-square test for association the number of degrees of freedom for the chi-square distribution of the test statistic is given by,

df=(R1)(C1)

Where R is the number of rows of the data in the contingency table (not including the row total) and C is the number of columns of data in the contingency table (not including the column totals).

Rejection Region for Chi-Square Test for Association:

Reject the null hypothesis, H0, if χ2χα2.

From the given information R = 4 and C = 5.

Substitute the above values in the formula of degrees of freedom to get the following,

df=(R1)(C1)=(41)(51)=(3)(4)=12

The number of degrees of freedom for this test is 12.

Use the level of significance of α=0.005 to find the critical value χ0.0052 of the chi-square distribution with df = 12 in order to make a decision about the null hypothesis.

Use the “Area to the right of the critical value χ2” table to get the following,

χ0.0052=28.2995

The test statistic value is χ2=34.2254.

Comparing the test statistic and critical value to get the following,

34.225428.2995χ2χ0.0052. Therefore, we reject the null hypothesis and conclude that assumptions are independent.

So, there is a relationship between grades and the combination of particular subject and gender for student in the state.

Final statement:

There is a relationship between grades and the combination of particular subject and gender for student in the state.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 10 Solutions

Beginning Statistics, 2nd Edition

Ch. 10.1 - Prob. 11ECh. 10.1 - Prob. 12ECh. 10.1 - Prob. 13ECh. 10.1 - Prob. 14ECh. 10.1 - Prob. 15ECh. 10.1 - Prob. 16ECh. 10.1 - Prob. 17ECh. 10.1 - Prob. 18ECh. 10.1 - Prob. 19ECh. 10.1 - Prob. 20ECh. 10.1 - Prob. 21ECh. 10.1 - Prob. 22ECh. 10.1 - Prob. 23ECh. 10.1 - Prob. 24ECh. 10.1 - Prob. 25ECh. 10.1 - Prob. 26ECh. 10.1 - Prob. 27ECh. 10.1 - Prob. 28ECh. 10.1 - Prob. 29ECh. 10.1 - Prob. 30ECh. 10.2 - Prob. 1ECh. 10.2 - Prob. 2ECh. 10.2 - Prob. 3ECh. 10.2 - Prob. 4ECh. 10.2 - Prob. 5ECh. 10.2 - Prob. 6ECh. 10.2 - Prob. 7ECh. 10.2 - Prob. 8ECh. 10.2 - Prob. 9ECh. 10.2 - Prob. 10ECh. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - Prob. 13ECh. 10.2 - Prob. 14ECh. 10.2 - Prob. 15ECh. 10.2 - Prob. 16ECh. 10.2 - Prob. 17ECh. 10.2 - Prob. 18ECh. 10.2 - Prob. 19ECh. 10.2 - Prob. 20ECh. 10.2 - Prob. 21ECh. 10.2 - Prob. 22ECh. 10.2 - Prob. 23ECh. 10.2 - Prob. 24ECh. 10.2 - Prob. 25ECh. 10.2 - Prob. 26ECh. 10.2 - Prob. 27ECh. 10.2 - Prob. 28ECh. 10.2 - Prob. 29ECh. 10.2 - Prob. 30ECh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Prob. 3ECh. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - Prob. 6ECh. 10.3 - Prob. 7ECh. 10.3 - Prob. 8ECh. 10.3 - Prob. 9ECh. 10.3 - Prob. 10ECh. 10.3 - Prob. 11ECh. 10.3 - Prob. 12ECh. 10.3 - Prob. 13ECh. 10.3 - Prob. 14ECh. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Prob. 17ECh. 10.3 - Prob. 18ECh. 10.3 - Prob. 19ECh. 10.4 - Prob. 1ECh. 10.4 - Prob. 2ECh. 10.4 - Prob. 3ECh. 10.4 - Prob. 4ECh. 10.4 - Prob. 5ECh. 10.4 - Prob. 6ECh. 10.4 - Prob. 7ECh. 10.4 - Prob. 8ECh. 10.4 - Prob. 9ECh. 10.4 - Prob. 10ECh. 10.5 - Prob. 1ECh. 10.5 - Prob. 2ECh. 10.5 - Prob. 3ECh. 10.5 - Prob. 4ECh. 10.5 - Prob. 5ECh. 10.5 - Prob. 6ECh. 10.5 - Prob. 7ECh. 10.5 - Prob. 8ECh. 10.5 - Prob. 9ECh. 10.5 - Prob. 10ECh. 10.5 - Prob. 11ECh. 10.5 - Prob. 12ECh. 10.5 - Prob. 13ECh. 10.5 - Prob. 14ECh. 10.5 - Prob. 15ECh. 10.6 - Prob. 1ECh. 10.6 - Prob. 2ECh. 10.6 - Prob. 3ECh. 10.6 - Prob. 4ECh. 10.6 - Prob. 5ECh. 10.6 - Prob. 6ECh. 10.6 - Prob. 7ECh. 10.6 - Prob. 8ECh. 10.6 - Prob. 9ECh. 10.6 - Prob. 10ECh. 10.6 - Prob. 11ECh. 10.6 - Prob. 12ECh. 10.6 - Prob. 13ECh. 10.6 - Prob. 14ECh. 10.6 - Prob. 15ECh. 10.6 - Prob. 16ECh. 10.6 - Prob. 17ECh. 10.6 - Prob. 18ECh. 10.6 - Prob. 19ECh. 10.6 - Prob. 20ECh. 10.6 - Prob. 21ECh. 10.6 - Prob. 22ECh. 10.6 - Prob. 23ECh. 10.6 - Prob. 24ECh. 10.6 - Prob. 25ECh. 10.6 - Prob. 26ECh. 10.7 - Prob. 1ECh. 10.7 - Prob. 2ECh. 10.7 - Prob. 3ECh. 10.7 - Prob. 4ECh. 10.7 - Prob. 5ECh. 10.7 - Prob. 6ECh. 10.7 - Prob. 7ECh. 10.7 - Prob. 8ECh. 10.7 - Prob. 9ECh. 10.7 - Prob. 10ECh. 10.7 - Prob. 11ECh. 10.7 - Prob. 12ECh. 10.7 - Prob. 13ECh. 10.7 - Prob. 14ECh. 10.7 - Prob. 15ECh. 10.7 - Prob. 16ECh. 10.7 - Prob. 17ECh. 10.7 - Prob. 18ECh. 10.7 - Prob. 19ECh. 10.7 - Prob. 20ECh. 10.CR - Prob. 1CRCh. 10.CR - Prob. 2CRCh. 10.CR - Prob. 3CRCh. 10.CR - Prob. 4CRCh. 10.CR - Prob. 5CRCh. 10.CR - Prob. 6CRCh. 10.CR - Prob. 7CRCh. 10.CR - Prob. 8CRCh. 10.CR - Prob. 9CRCh. 10.CR - Prob. 10CRCh. 10.CR - Prob. 11CRCh. 10.CR - Prob. 12CRCh. 10.CR - Prob. 13CRCh. 10.CR - Prob. 14CRCh. 10.CR - Prob. 15CRCh. 10.P - Prob. 1PCh. 10.P - Prob. 2PCh. 10.P - Prob. 3PCh. 10.P - Prob. 4PCh. 10.P - Prob. 5PCh. 10.P - Prob. 6PCh. 10.P - Prob. 7PCh. 10.P - Prob. 8PCh. 10.P - Prob. 9PCh. 10.P - Prob. 10P
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman