College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.3, Problem 10.2QQ
If you quickly plunge a room-temperature mercury thermometer into very hot water, the mercury level will (a) go up briefly before reaching a final reading, (b) go down briefly before reaching a final reading, or (c) not change.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
At what temperature would the rms speed of helium atoms equal
a. the escape speed from Earth, 1.12 m/s
b. the escape speed from the Moon, 2.37 m/s?
Note: The mass of a helium atom is 6.64 x 10-27 kg and the Boltzmann’s constant is
The next four questions use this description.
Our Sun has a peak emission wavelength of about 500 nm and a radius of about 700,000 km. Your dark-adapted eye has a pupil diameter of about 7 mm and can detect light intensity down to about 1.5 x 10-11 W/m2. Assume the emissivity of the Sun is equal to 1.
First, given these numbers, what is the surface temperature of the Sun in Kelvin to 3 significant digits?
What is the power output of the Sun in moles of watts? (in other words, take the number of watts and divide it by Avogadro's number)
Assuming that all of the Sun's power is given off as 500 nm photons*, how many photons are given off by the Sun every second? Report your answer to the nearest power of 10 (e.g. if you got 7 x 1024, give your answer as 25).
An expensive vacuum system can achieve a pressure as low as 1 x10 N/m² at 20 °C. How many
atoms are there in a cubic centimeter at this pressure and temperature? The Boltzman's constant
-23
k =1.38 X 10 m²kg/s²K)
Number of atoms: 1,8x1042
No, that's not the correct answer.
Chapter 10 Solutions
College Physics
Ch. 10.1 - Prob. 10.1QQCh. 10.3 - If you quickly plunge a room-temperature mercury...Ch. 10.3 - If you are asked to make a very sensitive glass...Ch. 10.3 - Two spheres are made of the same metal and have...Ch. 10.3 - Prob. 10.5QQCh. 10.5 - Prob. 10.6QQCh. 10 - (a) Why does an ordinary glass dish usually break...Ch. 10 - A sealed container contains a fixed volume of a...Ch. 10 - Some thermometers are made of a mercury column in...Ch. 10 - Prob. 4CQ
Ch. 10 - Objects deep beneath the surface of the ocean are...Ch. 10 - A container filled with an ideal gas is connected...Ch. 10 - Why do vapor bubbles in a pot of boiling water get...Ch. 10 - Markings to indicate length are placed on a steel...Ch. 10 - Figure CQ10.9 shows Maxwell speed distributions...Ch. 10 - The air we breathe is largely composed of nitrogen...Ch. 10 - Metal lids on glass jars can often be loosened by...Ch. 10 - Suppose the volume of an ideal gas is doubled...Ch. 10 - An automobile radiator is filled to the brim with...Ch. 10 - Figure CQ10.14 shows a metal washer being heated...Ch. 10 - Prob. 1PCh. 10 - The pressure in a constant-volume gas thermometer...Ch. 10 - Prob. 3PCh. 10 - Death Valley holds the record for the highest...Ch. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - A persons body temperature is 101.6F, indicating a...Ch. 10 - The temperature difference between the inside and...Ch. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - A grandfather clock is controlled by a swinging...Ch. 10 - A pair of eyeglass frames are made of epoxy...Ch. 10 - A spherical steel ball bearing has a diameter of...Ch. 10 - A brass ring of diameter 10.00 cm at 20.0C is...Ch. 10 - A wire is 25.0 m long at 2.00C and is 1.19 cm...Ch. 10 - The density of lead is 1.13 104 kg/m3 at 20.0C....Ch. 10 - The Golden Gate Bridge in San Francisco has a main...Ch. 10 - An underground gasoline tank can hold 1.00 103...Ch. 10 - Show that the coefficient of volume expansion, ,...Ch. 10 - A hollow aluminum cylinder 20.0 cm deep has an...Ch. 10 - A construction worker uses a steel tape to measure...Ch. 10 - The hand in Figure P10.23 is stainless steel...Ch. 10 - The Trans-Alaskan pipeline is 1 300 km long,...Ch. 10 - The average coefficient of volume expansion for...Ch. 10 - The density or gasoline is 7.30 102 kg/m3 at 0C....Ch. 10 - Figure P10.27 shows a circular steel casting with...Ch. 10 - The concrete sections of a certain superhighway...Ch. 10 - A sample of pure copper has a mass of 12.5 g....Ch. 10 - Prob. 30PCh. 10 - One mole of oxygen gas is at a pressure of 6.00...Ch. 10 - A container holds 0.500 m3 of oxygen at an...Ch. 10 - (a) An ideal gas occupies a volume of 1.0 cm3 at...Ch. 10 - An automobile tire is inflated with air originally...Ch. 10 - Prob. 35PCh. 10 - Gas is contained in an 8.00-L vessel at a...Ch. 10 - Prob. 37PCh. 10 - The density of helium gas at 0C is 0 = 0.179...Ch. 10 - An air bubble has a volume of 1.50 cm3 when it is...Ch. 10 - During inhalation, a persons diaphragm and...Ch. 10 - What is the average kinetic energy of a molecule...Ch. 10 - Prob. 42PCh. 10 - Three moles of an argon gas are at a temperature...Ch. 10 - A sealed cubical container 20.0 cm on a side...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - A 7.00-L vessel contains 3.50 moles of ideal gas...Ch. 10 - Prob. 49PCh. 10 - Prob. 50PCh. 10 - Inside the wall of a house, an L-shaped section of...Ch. 10 - The active element of a certain laser is made of a...Ch. 10 - A popular brand of cola contains 6.50 g of carbon...Ch. 10 - Prob. 54APCh. 10 - Prob. 55APCh. 10 - A 1.5-m-long glass tube that is closed at one end...Ch. 10 - Prob. 57APCh. 10 - A vertical cylinder of cross-sectional area A is...Ch. 10 - Prob. 59APCh. 10 - A 20.0-L tank of carbon dioxide gas (CO2) is at a...Ch. 10 - A liquid with a coefficient of volume expansion of...Ch. 10 - Before beginning a long trip on a hot day, a...Ch. 10 - Two concrete spans of a 250-m-long bridge are...Ch. 10 - An expandable cylinder has its top connected to a...Ch. 10 - A bimetallic strip of length L is made of two...Ch. 10 - A 250-m-long bridge is improperly designed so that...Ch. 10 - Prob. 67APCh. 10 - Two small containers, each with a volume of 1.00 ...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The gauge pressure in your car tires is 2.5×105 N/m² at a temperature of 35°C when you drive it onto a ferry boat to Alaska. What is their gauge pressure later, when their temperature has dropped to -40.0°C? HINT: Remember to convert temperatures to Kelvin first, and gauge pressure to absolute pressure (just add 1 atm = 1x10^5 N/m2). After that you can use the ideal gas law, but the result will be as an absolute pressure, so subtract back 1 atm before entering the result as a gauge pressure. Give your answer in units of [atm = 10^5 N/m2]arrow_forwardAn expensive vacuum system can achieve a pressure as low as 1 ×10-´N/m² at 20 °C. How many atoms are there in a cubic centimeter at this pressure and temperature? The Boltzman's constant k=1.38 x 10-23 m²kg/(s?K) Number of atoms:arrow_forwardIf a mercury thermometer is immersed in hot liquid, the mercury level goes down at first and then goes up. Explain why this happens.arrow_forward
- 1. A manager has a nominal €5,000,000 of bonds A, with a modified duration of 6% and which is negotiate at a price of 70%. Said manager is thinking of selling bonds A and buy bonds B, the latter have a price of 85% and a modified duration of 3.5%. a) What is the sensitivity of the price of bond A to a variation of 100 bp in the IRR of the bond? b) And what about bond b?arrow_forwardIn the text, it was shown that N / V = 2.68×1025 m−3 for gas at STP. (a) Show that this quantity is equivalent to N / V = 2.68×1019 cm−3 , as stated. (b) About how many atoms are there in one μm3 (a cubic micrometer) at STP?(c) What does your answer to part (b) imply about the separation of atoms and molecules?arrow_forwardThe escape velocity from the Moon is much smaller than from Earth and is only 2.38 km/s. At what temperature would hydrogen molecules (molecular mass is equal to 2.016 g/mol) have an average velocity vrms equal to the Moon’s escape velocity?arrow_forward
- The escape velocity of any object from Earth is 11,2 km/s. (a) Express this speed in m/s and km/h. Speed, m/s: 11200 Speed, km/h: 40320 (b) At what temperature would oxygen molecules (molecular mass is equal to 32 g/mol) have an average velocity, v. equal to Earth's escape velocity 11.2 km/s? rms' Temperature: 9,68 ×1025 × K No, that's only partially correctarrow_forward1. (a) What is the average kinetic energy in joules of a hydrogen atom on the 5500 °C surface of the Sun? The Boltzmann's constant is k=1.38×10-23 J/K J KE av (b) What is the average kinetic energy of a helium atom in a region of the solar corona where the temperature is 6 x 105⁰K? KE Fav Jarrow_forwardSpace Physics: The solar corona is a very hot atmosphere surrounding the visible surface of the sun. X-ray emissions from the corona show that its temperature is about 2 × 106 K. The gas pressure in the corona is about 0.03 Pa. Estimate the number density of particles in the solar corona with units of particles per cubic meter.arrow_forward
- The eye of a stove top has a total area of 0.0628 m2 and gives off energy at a rate of 8720 W. If we assume the stove top eye to be a perfect blackbody, what would be the temperature of the eye in Kelvin?arrow_forwardThe escape velocity of any object from earth is 11.2 km/s. a) express this speed in m/s and km/h. speed, m/s: speed,km/h: b) at what temperature would oxygen molecules (molecular mass is equal to 32 g/mol) have an average velocity, v rms, equal to earths escape velocity 11.2km/s? temperature: Karrow_forward43. The escape velocity from the Moon is much smaller than from Earth and is only 2.38 km/s. At what temperature would hydrogen molecules (molecular mass is equal to 2.016 g/mol) have an average velocity vms equal to the Moon's escape velocity?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY