College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 67AP
(a)
To determine
The change in angular speed of the disc.
(b)
To determine
The angular speed at the lower temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Following a collision in outer space, a copper disk at 850°C is rotating about its axis with an angular speed of 25.0 rad/s. As the disk radiates infrared light, its temperature falls to 20.0°C. No external torque acts on the disk. (a) Does the angular speed change as the disk cools? Explain how it changes or why it does not. (b) What is its angular speed at the lower temperature?
Following a collision between a large spacecraft and an asteroid, a copper disk of radius 28.0 m and thickness 1.20 m at a temperature of 850°C is floating in space, rotating about its symmetry axis with an angular speed of25.0 rad/s. As the disk radiates infrared light, its temperature falls to 20.0°C. No external torque acts on the disk. (a) Find the change in kinetic energy of the disk. (b) Find the change in internal energy of the disk. (c) Find theamount of energy it radiates.
Metal A is in thermal contact with another Metal B. The two metals have the same length and area. If the end of Metal A is held constant at 80°C and the opposite end (which is Metal B) is held at 300°C. What will be the temperature, in °C, at the junction? (Ka = 314 W/m K and Kb = 427 W/m K)
Chapter 10 Solutions
College Physics
Ch. 10.1 - Prob. 10.1QQCh. 10.3 - If you quickly plunge a room-temperature mercury...Ch. 10.3 - If you are asked to make a very sensitive glass...Ch. 10.3 - Two spheres are made of the same metal and have...Ch. 10.3 - Prob. 10.5QQCh. 10.5 - Prob. 10.6QQCh. 10 - (a) Why does an ordinary glass dish usually break...Ch. 10 - A sealed container contains a fixed volume of a...Ch. 10 - Some thermometers are made of a mercury column in...Ch. 10 - Prob. 4CQ
Ch. 10 - Objects deep beneath the surface of the ocean are...Ch. 10 - A container filled with an ideal gas is connected...Ch. 10 - Why do vapor bubbles in a pot of boiling water get...Ch. 10 - Markings to indicate length are placed on a steel...Ch. 10 - Figure CQ10.9 shows Maxwell speed distributions...Ch. 10 - The air we breathe is largely composed of nitrogen...Ch. 10 - Metal lids on glass jars can often be loosened by...Ch. 10 - Suppose the volume of an ideal gas is doubled...Ch. 10 - An automobile radiator is filled to the brim with...Ch. 10 - Figure CQ10.14 shows a metal washer being heated...Ch. 10 - Prob. 1PCh. 10 - The pressure in a constant-volume gas thermometer...Ch. 10 - Prob. 3PCh. 10 - Death Valley holds the record for the highest...Ch. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - A persons body temperature is 101.6F, indicating a...Ch. 10 - The temperature difference between the inside and...Ch. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - A grandfather clock is controlled by a swinging...Ch. 10 - A pair of eyeglass frames are made of epoxy...Ch. 10 - A spherical steel ball bearing has a diameter of...Ch. 10 - A brass ring of diameter 10.00 cm at 20.0C is...Ch. 10 - A wire is 25.0 m long at 2.00C and is 1.19 cm...Ch. 10 - The density of lead is 1.13 104 kg/m3 at 20.0C....Ch. 10 - The Golden Gate Bridge in San Francisco has a main...Ch. 10 - An underground gasoline tank can hold 1.00 103...Ch. 10 - Show that the coefficient of volume expansion, ,...Ch. 10 - A hollow aluminum cylinder 20.0 cm deep has an...Ch. 10 - A construction worker uses a steel tape to measure...Ch. 10 - The hand in Figure P10.23 is stainless steel...Ch. 10 - The Trans-Alaskan pipeline is 1 300 km long,...Ch. 10 - The average coefficient of volume expansion for...Ch. 10 - The density or gasoline is 7.30 102 kg/m3 at 0C....Ch. 10 - Figure P10.27 shows a circular steel casting with...Ch. 10 - The concrete sections of a certain superhighway...Ch. 10 - A sample of pure copper has a mass of 12.5 g....Ch. 10 - Prob. 30PCh. 10 - One mole of oxygen gas is at a pressure of 6.00...Ch. 10 - A container holds 0.500 m3 of oxygen at an...Ch. 10 - (a) An ideal gas occupies a volume of 1.0 cm3 at...Ch. 10 - An automobile tire is inflated with air originally...Ch. 10 - Prob. 35PCh. 10 - Gas is contained in an 8.00-L vessel at a...Ch. 10 - Prob. 37PCh. 10 - The density of helium gas at 0C is 0 = 0.179...Ch. 10 - An air bubble has a volume of 1.50 cm3 when it is...Ch. 10 - During inhalation, a persons diaphragm and...Ch. 10 - What is the average kinetic energy of a molecule...Ch. 10 - Prob. 42PCh. 10 - Three moles of an argon gas are at a temperature...Ch. 10 - A sealed cubical container 20.0 cm on a side...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - A 7.00-L vessel contains 3.50 moles of ideal gas...Ch. 10 - Prob. 49PCh. 10 - Prob. 50PCh. 10 - Inside the wall of a house, an L-shaped section of...Ch. 10 - The active element of a certain laser is made of a...Ch. 10 - A popular brand of cola contains 6.50 g of carbon...Ch. 10 - Prob. 54APCh. 10 - Prob. 55APCh. 10 - A 1.5-m-long glass tube that is closed at one end...Ch. 10 - Prob. 57APCh. 10 - A vertical cylinder of cross-sectional area A is...Ch. 10 - Prob. 59APCh. 10 - A 20.0-L tank of carbon dioxide gas (CO2) is at a...Ch. 10 - A liquid with a coefficient of volume expansion of...Ch. 10 - Before beginning a long trip on a hot day, a...Ch. 10 - Two concrete spans of a 250-m-long bridge are...Ch. 10 - An expandable cylinder has its top connected to a...Ch. 10 - A bimetallic strip of length L is made of two...Ch. 10 - A 250-m-long bridge is improperly designed so that...Ch. 10 - Prob. 67APCh. 10 - Two small containers, each with a volume of 1.00 ...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A spherical shell has inner radius 3.00 cm and outer radius 7.00 cm. It is made of material with thermal conductivity k = 0.800 W/m C. The interior is maintained at temperature 5C and the exterior at 40C. After an interval of time, the shell reaches a steady state with the temperature at each point within it remaining constant in time. (a) Explain why the rate of energy transfer P must be the same through each spherical surface, of radius r, within the shell and must satisfy dTdr=P4kr2 (b) Next, prove that 5dT=P4k0.030.07r2dr where T is in degrees Celsius and r is in meters. (c) Find the rate of energy transfer through the shell. (d) Prove that 5TdT=1.840.03rr2dr where T is in degrees Celsius and r is in meters. (e) Find the temperature within the shell as a function of radius. (f) Find the temperature at r = 5.00 cm, halfway through the shell.arrow_forwardBeryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forwardHow many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forward
- In an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 10.3 oC. The temperature at the inside surface of the wall is 18.1 oC. The wall is 0.14 m thick and has an area of 6.5 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall?arrow_forwardThe active element of a certain laser in made of a glass rod 28 cm long and 2.3 cm in diameter. Assume the average coefficient of linear expansion of the glass is equal to 9x10^-6 °C^-1 . If the temperature of the rod increases by 14 , what is the increase in its volume? Express your answer in cm^3arrow_forwardYou are using a thin layer of epoxy to bond a Silicon chip to a pure aluminum plate that acts as a heat sink (epoxy layer 0.0200mm). The Silicon chip (k = 149.0 W/(m-K) is 0.200 mm thick, and has dimensions of 25.0mm by 25.0mm. The pure aluminum plate is 0.850cm thick, and has the same dimensions as the Silicon chip. The hot side of the silicon chip is measured to be 62.0°C; the cold side of the pure aluminum plate is measured to be 31.0°C. Assuming steady-state conduction (with the thin layer of epoxy acting as contact resistance, see Table 3.2.) determine the heat transfer rate through the chip. Do not add in an addition resistance due to the thickness of the epoxy layer, this has been incorporated into the contact resistance.arrow_forward
- A 24.0 g copper ring at 0°C has an inner diameter of D = 2.90760 cm. A hollow aluminum sphere at 81.0°C has a diameter of d = 2.91274 cm. The sphere is placed on top of the ring (see the figure), and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. What is the mass of the sphere? The linear expansion coefficient of aluminum is 23.0 x 106 /C°, the linear expansion coefficient of copper is 17.0 x 10-6 /C, the specific heat of aluminum is 900 J/kg-K, and the specific heat of copper is 386 J/kg-K. Al Gu Number i Unitsarrow_forwardLiquid helium is stored at its boiling-point temperature of 4.2 K in a spherical container (r= 0.30 m). The container is a perfect blackbody radiator. The container is surrounded by a spherical shield whose temperature is 89 K. A vacuum exists in the space between the container and the shield. The latent heat of vaporization for helium is 2.1 x 104 J/kg. What mass of liquid helium boils away through a venting valve in one hour? i 0.34 kgarrow_forwardLiquid helium is stored at its boiling-point temperature of 4.2 K in a spherical container (r= 0.30 m). The container is a perfect blackbody radiator. The container is surrounded by a spherical shield whose temperature is 89 K. A vacuum exists in the space between the container and the shield. The latent heat of vaporization for helium is 2.1 x 104 J/kg. What mass of liquid helium boils away through a venting valve in one hour? m = iarrow_forward
- Hot oil is to be cooled by water in a one-shell-pass and eight-tube-passes heat exchanger. The tubes are thin-walled and are made of copper with an internal diameter of 1.4 cm. The length of each tube pass in the heat exchanger is 5 m, and the overall heat transfer coefficient is 310 W/m2?K. Water flows through the tubes at a rate of 0.2 kg/s, and the oil through the shell at a rate of 0.3 kg/s. The water and the oil enter at temperatures of 20°C and 150°C, respectively. Determine the rate of heat transfer in the heat exchanger and the outlet temperatures of the water and the oil.arrow_forwardA pipe with a 1.5 cm in diameter and 10 min length is gaining 800 W/m2 constant heat from its outer surface. Water enters the pipe at 25 °C with velocity of 0.1 m/s. What is the wall temperature at the exit plane of the pipe? Assume that all gaining heat is transferring the water. For water: k = 0.6 W/mK, ν = 0.75x10-6 m2/s, ρ = 1000 kg/m3, cp = 4187 J/kgK, Pr = 6.arrow_forwardThe air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg ? °C. Take the density of air to be 1.3 kg/m3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning