
Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN: 9780078807213
Author: Paul W. Zitzewitz
Publisher: Glencoe/McGraw-Hill
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10.1, Problem 8PP
To determine
Work done by rope on the box.
Expert Solution & Answer

Answer to Problem 8PP
Explanation of Solution
Given:
Length of rope is
Angle of rope with the floor is
Force applied is
Formula used:
Work done by rope on the box is given as,
Calculation:
Putting the given values in equation (1)
Conclusion:
So, work done by rope on the box is
Chapter 10 Solutions
Glencoe Physics: Principles and Problems, Student Edition
Ch. 10.1 - Prob. 1PPCh. 10.1 - Prob. 2PPCh. 10.1 - Prob. 3PPCh. 10.1 - Prob. 4PPCh. 10.1 - Prob. 5PPCh. 10.1 - Prob. 6PPCh. 10.1 - Prob. 7PPCh. 10.1 - Prob. 8PPCh. 10.1 - Prob. 9PPCh. 10.1 - Prob. 10PP
Ch. 10.1 - Prob. 11PPCh. 10.1 - Prob. 12PPCh. 10.1 - Prob. 13PPCh. 10.1 - Prob. 14PPCh. 10.1 - Prob. 15SSCCh. 10.1 - Prob. 16SSCCh. 10.1 - Prob. 17SSCCh. 10.1 - Prob. 18SSCCh. 10.1 - Prob. 19SSCCh. 10.1 - Prob. 20SSCCh. 10.1 - Prob. 21SSCCh. 10.1 - Prob. 22SSCCh. 10.1 - Prob. 23SSCCh. 10.1 - Prob. 24SSCCh. 10.2 - Prob. 25PPCh. 10.2 - Prob. 26PPCh. 10.2 - Prob. 27PPCh. 10.2 - Prob. 28PPCh. 10.2 - Prob. 29PPCh. 10.2 - Prob. 30SSCCh. 10.2 - Prob. 31SSCCh. 10.2 - Prob. 32SSCCh. 10.2 - Prob. 33SSCCh. 10.2 - Prob. 34SSCCh. 10 - Prob. 35ACh. 10 - Prob. 36ACh. 10 - Prob. 37ACh. 10 - Prob. 38ACh. 10 - Prob. 39ACh. 10 - Prob. 40ACh. 10 - Prob. 41ACh. 10 - Prob. 42ACh. 10 - Prob. 43ACh. 10 - Prob. 44ACh. 10 - Prob. 45ACh. 10 - Prob. 46ACh. 10 - Prob. 47ACh. 10 - Prob. 48ACh. 10 - Prob. 49ACh. 10 - Prob. 50ACh. 10 - Prob. 51ACh. 10 - Prob. 52ACh. 10 - Prob. 53ACh. 10 - Prob. 54ACh. 10 - Prob. 55ACh. 10 - Prob. 56ACh. 10 - Prob. 57ACh. 10 - Prob. 58ACh. 10 - Prob. 59ACh. 10 - Prob. 60ACh. 10 - Prob. 61ACh. 10 - Prob. 62ACh. 10 - Prob. 63ACh. 10 - Prob. 64ACh. 10 - Prob. 65ACh. 10 - Prob. 66ACh. 10 - Prob. 67ACh. 10 - Prob. 68ACh. 10 - Prob. 69ACh. 10 - Prob. 70ACh. 10 - Prob. 71ACh. 10 - Prob. 72ACh. 10 - Prob. 73ACh. 10 - Prob. 74ACh. 10 - Prob. 75ACh. 10 - Prob. 76ACh. 10 - Prob. 77ACh. 10 - Prob. 78ACh. 10 - Prob. 79ACh. 10 - Prob. 80ACh. 10 - Prob. 81ACh. 10 - Prob. 82ACh. 10 - Prob. 83ACh. 10 - Prob. 84ACh. 10 - Prob. 85ACh. 10 - Prob. 86ACh. 10 - Prob. 87ACh. 10 - Prob. 88ACh. 10 - Prob. 89ACh. 10 - Prob. 90ACh. 10 - Prob. 91ACh. 10 - Prob. 92ACh. 10 - Prob. 93ACh. 10 - Prob. 94ACh. 10 - Prob. 95ACh. 10 - Prob. 96ACh. 10 - Prob. 97ACh. 10 - Prob. 98ACh. 10 - Prob. 99ACh. 10 - Prob. 100ACh. 10 - Prob. 101ACh. 10 - Prob. 102ACh. 10 - Prob. 1STPCh. 10 - Prob. 2STPCh. 10 - Prob. 3STPCh. 10 - Prob. 4STPCh. 10 - Prob. 5STPCh. 10 - Prob. 6STPCh. 10 - Prob. 7STPCh. 10 - Prob. 8STP
Additional Science Textbook Solutions
Find more solutions based on key concepts
What dipeptides would be formed by heating a mixture of valine and N-protected leucine?
Organic Chemistry (8th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
The most plausible hypothesis to explain why species richness is higher in tropical than in temperate regions i...
Campbell Biology (11th Edition)
40. Use the Lewis model to determine the formula for the compound that forms from each pair of atoms.
a. Al and...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 04.08 (17 points). Answer the following questions related to the figure below. ථි R₁ www R₂ E R₁ www ли R₁ A Use Kirchhoff's laws to calculate the currents through each battery and resistor in terms of R1, R2, E1, & E2. B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2, which direction is the current flowing through E₁? Through R₂? C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through R2?arrow_forwardA 105- and a 45.0-Q resistor are connected in parallel. When this combination is connected across a battery, the current delivered by the battery is 0.268 A. When the 45.0-resistor is disconnected, the current from the battery drops to 0.0840 A. Determine (a) the emf and (b) the internal resistance of the battery. 10 R2 R₁ ww R₁ Emf 14 Emf Final circuit Initial circuitarrow_forwardA ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.arrow_forward
- Correct answer please. I will upvote.arrow_forwardDefine operational amplifierarrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forwardhelparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forward
- Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwwwarrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY