
(a)
The force exerted by T.
(a)

Answer to Problem 66A
The force exerted by T is
Explanation of Solution
Given:
The weight of the Piano is
The distance up to which the piano is raised is
The length of the rope pulled by T is
Formula used:
The efficiency of a machine is the ratio of output work to the input work.
The expression for the efficiency of the machine is
Here,
Calculation:
Consider T tries to lift the Piano up to a distance of
The resistance force exerted by the Piano is
Consider the effort put by T in lifting the piano is denoted by
The length of the rope pulled by T is
The efficiency of the machine is
The force exerted by Tis,
Conclusion:
Therefore, the force exerted by T is
(b)
The force utilized to balance the friction force.
(b)

Answer to Problem 66A
The force utilized to balance the frictional force is
Explanation of Solution
Given:
The weight of the Piano is
The distance up to which the piano is raised is
The length of the rope pulled by T is
The actual effort force exert by T is
Formula used:
For an equilibrium condition, the total force acting on an object is equal to zero.
Calculation:
The actual effort force exerted by T in lifting the Piano is
From part (a), the effort exerted by the T in lifting the Piano is
The force
Conclusion:
Therefore, the force utilized to balance the frictional force is
(c)
The output work.
(c)

Answer to Problem 66A
The output work done is
Explanation of Solution
Given:
The weight of the Piano is
The distance up to which the piano is raised is
The length of the rope pulled by T is
The actual effort force exert by T is
Formula used:
The output work
Calculation:
The displacement of the load is
The resistance force exerted by the Piano is
The output work done for a machine as follows:
Conclusion:
Therefore, the output work done is
(d)
The input work done.
(d)

Answer to Problem 66A
The input work done is
Explanation of Solution
Given:
The weight of the Piano is
The distance up to which the piano is raised is
The length of the rope pulled by T is
The actual effort force exert by T is
Formula used:
The input work
Calculation:
The effort put by T in lifting the piano is
The length of the rope pulled by T is
The input work done for a machine as follows:
Conclusion:
Therefore, the input work done is
(e)
The mechanical advantage of the machine.
(e)

Answer to Problem 66A
The mechanical advantage of the machine is
Explanation of Solution
Given:
The weight of the Piano is
The distance up to which the piano is raised is
The length of the rope pulled by T is
The actual effort force exert by T is
Formula used:
The mechanical advantage of the machine
Calculation:
The effort put by T in lifting the piano is
The resistance force exerted by the Piano is
The mechanical advantage of the machine as follows:
Conclusion:
Therefore, the mechanical advantage of the machine is
Chapter 10 Solutions
Glencoe Physics: Principles and Problems, Student Edition
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Human Anatomy & Physiology (2nd Edition)
Human Physiology: An Integrated Approach (8th Edition)
Campbell Biology (11th Edition)
Microbiology: An Introduction
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





