Some camera flashes use flash tubes that requite a high voltage. They obtain a high voltage by charging capacitors in parallel and then internally changing the connections of the capacitors to place diem in series. Consider a circuit that uses four AAA batteries connected in series to charge six 10-mF capacitors through an equivalent resistance of 100 Ω . The connections are thenswitched internally to place the capacitors in series. The capacitors discharge through a lamp with a resistance of 100 Ω . (a) What is the RC time constant and the initialcurrent out of the batteries while they are connected in parallel? (b) How long does it take for the capacitors to charge to 90% of the terminal voltages of the batteries? (c) What is the RC time constant and the initial current of the capacitors connected in series assuming it discharges at 90% of full charge? (d) How long does it rake the current to decrease to 10% of the initial value?
Some camera flashes use flash tubes that requite a high voltage. They obtain a high voltage by charging capacitors in parallel and then internally changing the connections of the capacitors to place diem in series. Consider a circuit that uses four AAA batteries connected in series to charge six 10-mF capacitors through an equivalent resistance of 100 Ω . The connections are thenswitched internally to place the capacitors in series. The capacitors discharge through a lamp with a resistance of 100 Ω . (a) What is the RC time constant and the initialcurrent out of the batteries while they are connected in parallel? (b) How long does it take for the capacitors to charge to 90% of the terminal voltages of the batteries? (c) What is the RC time constant and the initial current of the capacitors connected in series assuming it discharges at 90% of full charge? (d) How long does it rake the current to decrease to 10% of the initial value?
Some camera flashes use flash tubes that requite a high voltage. They obtain a high voltage by charging capacitors in parallel and then internally changing the connections of the capacitors to place diem in series. Consider a circuit that uses four AAA batteries connected in series to charge six 10-mF capacitors through an equivalent resistance of
100
Ω
. The connections are thenswitched internally to place the capacitors in series. The capacitors discharge through a lamp with a resistance of
100
Ω
. (a) What is the RC time constant and the initialcurrent out of the batteries while they are connected in parallel? (b) How long does it take for the capacitors to charge to 90% of the terminal voltages of the batteries? (c) What is the RC time constant and the initial current of the capacitors connected in series assuming it discharges at 90% of full charge? (d) How long does it rake the current to decrease to 10% of the initial value?
Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.)
(a) Where can a third charge be placed so that the net force on it is zero?
0.49
m to the right of the -2.50 μC charge
(b) What if both charges are positive?
0.185
xm to the right of the 2.50 μC charge
c = ad
Find the electric field at the location of q, in the figure below, given that q₁ = 9₁ = 9₁ = +4.60 nC, q=-1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.)
magnitude
direction
N/C
° counterclockwise from the +x-axis
9a
%
9
9b
Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the
system of all three beads is zero.
E field lines
93
92
What charge does each bead carry?
91
92
-1.45
What is the net charge of the system? What charges have to be equal? μC
2.9
✓
What is the net charge of the system? What charges have to be equal? μC
93
2.9
με
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY