![Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term](https://www.bartleby.com/isbn_cover_images/9781305932302/9781305932302_largeCoverImage.gif)
Concept explainers
(a)
The rotational kinetic energy.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 54P
The rotational kinetic energy for the system is
Explanation of Solution
Redraw the figure P10.54.
Consider that the vertically standing to be initial position and horizontal to be the final position.
Write the equation for conservation of energy.
Here,
From the law of conservation of energy, gain in rotational kinetic energy equals to loss in gravitational potential energy for the given system.
Write the expression for rotational kinetic energy.
Here,
Write the expression for loss in gravitational potential energy for sphere.
Here,
Write the expression for loss in gravitational potential energy for rod.
Here,
Substitute
Conclusion:
Substitute
Thus, the rotational kinetic energy for the system is
(b)
The angular speed of the rod and ball.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 54P
The angular speed of the ball and the rod is
Explanation of Solution
Write the expression for moment of inertia of sphere at center.
Here,
Write the expression for the parallel axis theorem for moment of inertia at point
Here,
Substitute
Write the expression for moment of inertia of rod at point
Here,
Write the expression for net moment of inertia for the whole system.
Here,
Substitute
Write the expression for rotational kinetic energy.
Here,
Simply the above equation for value of
Conclusion:
Substitute
Substitute
Thus, the angular speed of the ball and the rod is
(c)
Thelinear speed of the center of mass of the ball.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 54P
The linear speed of the ball of center of mass is
Explanation of Solution
Write the expression for linear speed of the ball.
Here,
Substitute
Here,
Conclusion:
Substitute
Thus, the linear speed of the ball of center of mass is
(d)
Compare the speed with the speed had the ball fallen freelythrough the same distance of
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 54P
The rod pulls the sphere down together while rotating by the speed factor
Explanation of Solution
Loss in gravitational potential energy will be equal to gain in kinetic energy.
Write the expression for the conservation of energy.
Write the expression for loss in gravitational potential energy for sphere.
Here,
Write the expression for gain kinetic energy.
Here,
Substitute
Write the expression for the ratio of new speed to the original speed.
Here,
Conclusion:
Substitute
Substitute
Thus, the rod pulls the sphere down together while rotating by more speed than in direct falling by the factor of
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forwardNeed complete solution Pleasearrow_forward
- Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forwardThe magnitude of vector →A i s 261. m and points in the direction 349.° counterclockwise from the positive x-axis. Calculate the x-component of this vector . Calculate the y-component of this vector.arrow_forwardNo chatgpt pls will upvotearrow_forward
- 4.4 A man is dragging a trunk up the loading ramp of a mover's truck. The ramp has a slope angle of 20.0°, and the man pulls upward with a force F whose direction makes an angle of 30.0° 75.0° with the ramp (Fig. E4.4). (a) How large a force F is necessary for the component Fx parallel to the ramp to be 90.0 N? (b) How large will the component Fy perpendicular to the ramp be then? Figure E4.4 30.0 20.0°arrow_forward1. * A projectile is shot from a launcher at an angle e, with an initial velocity magnitude v., from a point even with a tabletop. The projectile lands on the tabletop a horizontal distance R (the "range") away from where it left the launcher. Set this up as a formal problem, and solve for vo (i.e., determine an expression for Vo in terms of only R, 0., and g). Your final equation will be called Equation 1.arrow_forward2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, o,y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0., y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)