(a)
The total torques due to the weight of the hand about the axis of rotation when the time reads
(a)
Answer to Problem 72AP
The total torques due to the weight of the hand about the axis of rotation when the time reads
Explanation of Solution
Given information: The mass of hour hand is
Formula to calculate the net torque produced by the clock’s hand is,
Here,
Formula to calculate the angular speed of the hour hands is,
Substitute
Thus, the angular speed of the hour hand is
Formula to calculate the angular speed of the minute hands is,
Substitute
Thus, the angular speed of the hour hand is
Let take
Write the expression for the angular position of the hour hands at time
Here,
Substitute
Write the expression for the angular position of the minute hands at time
Here,
Substitute
Substitute
Substitute
When clock shows time
Substitute
Thus, the net torque is
When clock shows time
Substitute
Thus, the net torque is
When clock shows time
Substitute
Thus, the net torque is
When clock shows time
Substitute
Thus, the net torque is
When clock shows time
Substitute
Thus, the net torque is
Conclusion:
Therefore, the total torques due to the weight of the hand about the axis of rotation when the time reads
(b)
The all the time nearest to second when total torque about the axis of rotation is zero by solving the transcendental equation.
(b)
Answer to Problem 72AP
The time corresponding to the zero torque is given as:
Time(hr) | Clock time |
0 | 12:00:00 |
0.515 | 12:30:55 |
0.971 | 12:58:19 |
1.54 | 1:32:31 |
1.95 | 1:57:01 |
2.56 | 2:33:25 |
2.94 | 2:56:29 |
Explanation of Solution
Given information: The mass of hour hand is
From equation (2), the expression for the total torque is given by,
Substitute
Since it is a transcendental equation, solving the equation numerically the values of time comes out to be 0, 0.515, 0.971, 1.54, 1.95……so on.
The time corresponding to the time is given as:
Time(hr) | Clock time |
0 | 12:00:00 |
0.515 | 12:30:55 |
0.971 | 12:58:19 |
1.54 | 1:32:31 |
1.95 | 1:57:01 |
2.56 | 2:33:25 |
2.94 | 2:56:29 |
Conclusion:
Therefore, time corresponding to the zero torque is given as:
Time(hr) | Clock time |
0 | 12:00:00 |
0.515 | 12:30:55 |
0.971 | 12:58:19 |
1.54 | 1:32:31 |
1.95 | 1:57:01 |
2.56 | 2:33:25 |
2.94 | 2:56:29 |
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Why can't this be correct: &= 7m?arrow_forwardgive a brief definition of the word "paradigm" as well as an example of a current scientific paradigmarrow_forward7. Are all scientific theories testable in the commonly understood sense? How does this make you feel? How should you proceed as a scientist or engineer with this understanding?arrow_forward
- What is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forwardMultiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forward
- How is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
- Is a scientific theory supposed to just be someone's idea about somethingarrow_forwardwhat is the agenda of physicsarrow_forwardWatch the video of Cooper’s play, while conducting and documenting your observation using a chosen observation tool. Case Study 1b - Cooper Carol has asked you to support the babies and toddler’s room educators this week. She has requested that you complete an observation on Cooper, who is a 10-month-old toddler. Carol wants to see how well you conduct an observation and is interested in how you manage to communicate in any observations made, using a strengths-based, non-judgemental, anti-biased approach, as this is a fundamental part of creating a supportive and respectful culture at Little Catalysts ELC. Video: Cooper's play (6:45 min) Resources Module 7 eLearns Template: Learning story observation, Section 1 Template: Running record observation, Section 1 Template: Anecdotal record observation, Section 1 Video: Cooper's play (6:45 min) Complete and upload an observation of Cooper to support educators in future curriculum planning. Choose one (1) of the observation…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning