Concept explainers
(a)
The angular speed of the rod.
(a)
Answer to Problem 73AP
The angular speed of the rod is
Explanation of Solution
For calculation of gravitational energy, rigid body can be modeled as particle at center of mass.
Only conservative forces are acting on the bar, we have conservation of energy of the bar-Earth system. This can be solving by Conservation of energy.
Write the expression for conservation of energy as.
Here,
Substitute
Rearrange the above equation as.
Write the expression for final kinetic energy of the rod as.
Here,
The moment of inertia of rod is
Substitute
Here,
Rearrange the above equation as.
Write the expression for initial potential energy as.
Here,
Conclusion:
Substitute
Simplify the above equation as.
Thus, the angular speed of the rod is
(b)
The magnitude of
(b)
Answer to Problem 73AP
The magnitude of the angular acceleration is
Explanation of Solution
Redraw the figure P10.73 as.
Angular acceleration can be found using torque analysis.
Write the expression for torque of the rod as.
Here,
Write the expression for torque in terms of force and distance as.
Here,
The length is between a center of rotation and the pivot point where a force is applied that means distance for the pivot is
Substitute
Substitute
Rearrange the above expression for angular acceleration as.
Thus, the magnitude of the angular acceleration is
Conclusion:
(c)
The
(c)
Answer to Problem 73AP
The net acceleration for the system is
Explanation of Solution
Redraw the figure P10.73 for calculate the components of the acceleration as
Refer to figure, the horizontal acceleration is directed towards the centre. If an object is free to move due to fixed point. The object will follow the circular path. Since, the horizontal acceleration will act as centripetal acceleration.
Write the expression for horizontal acceleration as.
Here,
Negative sign shows the direction of acceleration towards the negative
Write the expression for centripetal acceleration for the rod as.
Here,
The radius of circular path for this system is defined as the half length of the rod that is
Substitute
Simplify the above equation as.
As the vertical acceleration will be same as tangential acceleration the rod follows the circular path.
Write the expression for vertical acceleration as.
Here,
Write the expression for tangential acceleration as.
Substitute
Simplify the above equation as.
Write the expression for net acceleration for the
Here,
Conclusion:
Substitute
This is centripetal acceleration; it is directed along the negative horizontal.
Substitute
This is centripetal acceleration; it is directed along the negative vertical.
Substitute
Simplify the above equation as.
Thus, the net acceleration for the system is
(d)
The components of the reaction force at the pivot.
(d)
Answer to Problem 73AP
The net force exerts on the rod at the pivot is
Explanation of Solution
The pivot exerts a force
Write the expression for force on the rod as.
Here,
Write the expression for horizontal force as.
Substitute
Rearrange the above equation as.
Write the expression for vertical force as.
Substitute
Simplify the above equation as.
Conclusion:
Substitute
Thus, the net force exerts on the rod at the pivot is
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Two astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardA student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forwardThe uniform thin rod in Figure P8.47 has mass M = 3.50 kg and length L = 1.00 m and is free to rotate on a friction less pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of (a) the rods angular acceleration, (b) the tangential acceleration of the rods center of mass, and (c) the tangential acceleration of the rods free end. Figure P8.47 Problems 47 and 86.arrow_forward
- Rigid rods of negligible mass lying along the y axis connect three particles (Fig. P10.18). The system rotates about the x axis with an angular speed of 2.00 rad/s. Find (a) the moment of inertia about the x axis, (b) the total rotational kinetic energy evaluated from 12I2, (c) the tangential speed of each particle, and (d) the total kinetic energy evaluated from 12mivi2. (e) Compare the answers for kinetic energy in parts (b) and (d). Figure P10.18arrow_forwardA uniform disk of mass m = 10.0 kg and radius r = 34.0 cm mounted on a frictionlessaxle through its center, and initially at rest, isacted upon by two tangential forces of equalmagnitude F, acting on opposite sides of itsrim until a point on the rim experiences acentripetal acceleration of 4.00 m/s2 (Fig.P13.73). a. What is the angular momentumof the disk at this time? b. If F = 2.00 N, howlong do the forces have to be applied to thedisk to achieve this centripetal acceleration? FIGURE P13.73arrow_forwardTwo astronauts (Fig. P10.67), each having a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one astronaut shortens the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forward
- Consider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forwardA disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forwardA wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and radius R (Fig. P10.75). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the claycylinder system constant in this process? Explain your answer. (c) Is the momentum of the claycylinder system constant in this process? Explain your answer. Figure P10.75arrow_forward
- The angular momentum vector of a precessing gyroscope sweeps out a cone as shown in Figure P11.31. The angular speed of the tip of the angular momentum vector, called its precessional frequency, is given by p=/I, where is the magnitude of the torque on the gyroscope and L is the magnitude of its angular momentum. In the motion called precession of the equinoxes, the Earths axis of rotation processes about the perpendicular to its orbital plane with a period of 2.58 104 yr. Model the Earth as a uniform sphere and calculate the torque on the Earth that is causing this precession. Figure P11.31 A precessing angular momentum vector sweeps out a cone in space.arrow_forwardA thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through its center of mass. Find the magnitude of therods angular momentum.arrow_forwardTwo particles of mass m1 = 2.00 kgand m2 = 5.00 kg are joined by a uniform massless rod of length = 2.00 m(Fig. P13.48). The system rotates in thexy plane about an axis through the midpoint of the rod in such a way that theparticles are moving with a speed of 3.00 m/s. What is the angular momentum of the system? FIGURE P13.48arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning