
Concept explainers
To review:
The better reducing agent ineach of the given pairs:
NADH/H2O
UQH2/FADH2
Cyt c (reduced)/Cyt b (reduced)
FADH2/ NADH
NADH/ FMNH2
Introduction:
Reduction is a process of the gain of H+ (hydrogen ions) or the loss of O (oxygen), whileoxidation is a process of the gain of oxygen or the loss of hydrogen. Oxidizing agents add an oxygen to another substance or remove a hydrogen from a substance. Reducing agent, sn the other hand, either add a hydrogen or remove an oxygen from a compound.

Explanation of Solution
Better reducing agents out of the mentioned substances in the given pairs of compounds are discussed below:
NADH/H2O: NADH (reduced Nicotinamide adenine dinucleotide)is a better reducing agent because water molecule is considered weak as both, oxidizing as well as reducing agent, as it can reduce only a limited number of substances, whereas NADH can reduce a variety of substances. Moreover, the redox potential of NADH is lower as compared to the water molecules.
UQH2/FADH2: UQH2(Ubiquinol-10-reduced) is a better reducing agent because it can easily propagate electrons from complex I. Moreover, its redox potential is significantly lower than the FADH2 moiety.
Cyt c (reduced)/Cyt b (reduced): Cyt b (Cytochrome b), in its reduced form, is a better reducing agent because it can easily liberate electrons to reduce cytochrome a and has a much lower reduction potential than Cyt c.
FADH2/NADH: NADH (Nicotinamide adenine dinucleotide) is a better reducing agent than FADH2 (Flavin adenine dinucleotide) because of its lower reduction potential value and the ability to easily liberate electrons.
NADH/FMNH2: FMNH2 (flavin mononucleotide) is a better reducing agent than NADH ((Nicotinamide adenine dinucleotide) because of the fact that it can easily donate electrons and has a considerably lower reduction potential.
Therefore, it can be concluded that the ability to act as a reducing agent depends on the intricate reduction potential of a chemical species. In case a chemical species has a high reduction potential, it has a strong affinity for electrons, while a low reduction potential facilitates easy liberation of electrons. The liberated electrons can be used to reduce other molecules and therefore, a low reduction potential value confers higher reducing capabilities.
Want to see more full solutions like this?
Chapter 10 Solutions
Biochemistry, The Molecular Basis of Life, 6th Edition
- Imagine that aldolase can react with the seven carbon molecule Sedoheptulose-1,7-bisphosphate (below). Use the mechanism to predict the two products generated. Please draw out the stereochemistry in a fischer projection.arrow_forwardSodium borohydride (NaBH4) is a potent inhibitor of aldolase. It is known to ONLY inhibit theenzyme when it is complexed with substrate. Treatment of the enzyme alone has no effect.What is the mechanism for this inhibition? Please draw out the mechanism and show how it inhibits this.arrow_forwardShow the fate of the proton on the 4-Oxygen molecule of F-1,6-BP. Please include a drawing showing the electron flow that occurs.arrow_forward
- 1. Which one is the major organic product obtained from the following aldol condensation? O NaOH, H₂O heat A B C D Earrow_forwardAn organic chemist ordered the wrong item. She wanted to obtain 1-hydroxy-2-butanone, butinstead ordered 2-hydroxybutyraldehyde. As a good biochemist, show how the organic chemistcould use biological catalysis to make her desired compound. Please show the mechanism by drawing.arrow_forwardShow the fate of the hydrogen on carbon-2 of glucose. Please draw out the structure using curve arrows to show electron flow.arrow_forward
- 3. Which one of the compounds below is the major product formed by the reaction sequence shown here? CH3 + CH3NO2 NaOH H2, Ni ? nitromethane acetophenone OH OH HO HN- u x x x x Ph A HO -NH2 HO H Ph Ph Ph N- H B Ph NH2 D Earrow_forward4. Only ONE of the five compounds below can be prepared by an aldol condensation in which a single carbonyl compound is treated with base. Which one is it? To solve this problem, reverse the aldol condensation that formed each of these molecules to find out what two molecules came together to make the products. The one in which the two molecules are identical is the answer. Ph Ph ཚིག གནས ག ནཱ ཀ ན ཀནཱ A Ph H B Ph Ph H D Ph. Ph Ph E Harrow_forward5. Which one is the major organic product obtained from the following reaction sequence? First, equimolar amounts of cyclopentanone and LDA are mixed at -78°C. Then propionaldehyde (propanal) is added. Addition of aqueous acid completes the process. LDA, -78°C. 1. 2. H₂O* H A B H 0 D H H Earrow_forward
- 2. Which one is the major organic product obtained from the following reaction? NaOH, H₂O heat A B C D Earrow_forwardCH3CH2CHO + propanal PhCH2CHO 2-phenylacetaldehyde mixture of four products NaOH 10. In the crossed aldol reaction of propanal and 2-phenylacetaldehyde shown above, a mixture of four products will be formed. Which ONE of the compounds below will NOT be formed in this crossed aldol reaction? OH Ph A H OH OH Ph H B OH OH H H H Ph Ph C Ph D Earrow_forwardAn organic chemist ordered the wrong item. She wanted to obtain 1-hydroxy-2-butanone, butinstead ordered 2-hydroxybutyraldehyde. As a good biochemist, show how the organic chemistcould use biological catalysis to make her desired compound.arrow_forward
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningBasic Clinical Lab Competencies for Respiratory C...NursingISBN:9781285244662Author:WhitePublisher:Cengage


