FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 137P
To determine
The momentum thickness at the center of the plate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Fluid Mechanics Hw #3
Consider a commercial airliner flying at a speed of 540 mph (relative to the air) at analtitude of 30,000 feet.
(c) With a mean molar mass of M = 28.9 g/mol, determine the Reynolds number andMach number in flight. Justify your choice of characteristic length by referencinga commercial aircraft currently in service.(d) Is this flow inviscid or viscous? Is this flow subsonic or supersonic? Qualitativelydescribe the differences between these flight regimes.
(a) The gap between two horizontal plates is 5 mm. The gap is filled with oil of a relative density
of 0.88 and a kinematic viscosity of 5 x 104 m?/s. What is the shear stress required to slide
the upper plate at a speed of 2.5 m/s over the bottom plate?
(b) Seawater of density 1025 kg/m³ and viscosity of 8.9 x 104 Pa-s is flowing through a pipe of
100 mm diameter at a rate of 3.6 litres/minute. Calculate the Reynolds number and state
whether the flow is laminar or turbulent.
(c) A jet of water with a diameter of 100 mm flows vertically until it meets a solid vane that
deflected it at an angle of 180°. The initial velocity of the jet is 20 m/s. As a result of friction,
the velocity of the jet leaving the vane is 15 m/s. Assuming the fluid is at atmospheric
pressure throughout and neglecting the gravity effects, calculate the magnitude of the force
exerted by the water on the vane. (water density 1000 kg/m³)
Chapter 10 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- If a vertical wall at temperature T, is surrounded by a fluid at temperature T, a natural convection boundary layer flow will form. For laminar flow, the momentum equation is au ди. p(u-+ v) = PB(T – T)g + µ- ди ay to be solved, along with continuity and energy, for (u, v, T) with appropriate boundary conditions. The quantity B is the thermal expansion coefficient of the fluid. Use p, g, L, and (Tw- To) to nondimensionalize this equation. Note that there is no “stream" velocity in this type of flow.arrow_forwardi need the answer quicklyarrow_forwardAir flows over a stationary flat plate at speed of 4,6 m/s . Plate has a width of 1 m. Air has a density of 1.2 kg/m3 and kinematic viscosity of 1.5x 10-5 m 2/s . Consider plate is totally in air flow field and upper and lower surfaces are identical a) Calculate maximum length of the plate to have a fully laminar flow (in m) b) Calculate total frictional force on the plate considering two surfaces (in N) c) In order to eliminate the frictional force on its surfaces calculate the plate speed(in m/s)arrow_forward
- Air flows over a stationary flat plate at speed of 4,3 m/s. Plate has a width of 1 m. Air has a density of 1.2 kg/m³ and kinematic viscosity of 1.5x 105 m²/s. Consider plate is totally in air flow field and upper and lower surfaces are identical a) Calculate maximum length of the plate to have a fully laminar flow (in m) Yanıt: b) Calculate total frictional force on the plate considering two surfaces (in N) Yanıt: c) In order to eliminate the frictional force on its surfaces calculate the plate speed (in m/s) Yanıt:arrow_forwardi have fluid mechanics exam tomorrow but i couldnt understand first 3 part of that question. thank you so much who can solve this for me .arrow_forwardTwo immiscible Newtonian liquids, A and B, are in steady laminar flow between two parallelplates. Which, if any, of the velocity profiles shown below are impossible? Explain your answerscarefully.shear stress is visocsity time dux/dyarrow_forward
- A fluid with viscosity of u = 1.752 x 10-5kg/m. s and density of p = 1.2kg/m3 flows at U=1 m/s over a flat plate. The boundary layer displacement thickness %3D at the end of the plate is reported 0.01315 m. Assuming the flow is laminar, (a) Find the boundary layer thickness at the end of the plate. (b) Find the momentum thickness at that location. (c) Find the drag force of the plate.arrow_forwardA liquid of density 1150 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.47 m/s and the pipe diameter d1 is 11.7 cm. At Location 2, the pipe diameter d2 is 17.7 cm. At Location 1, the pipe is Ay=8.19 m higher than it is at Location 2. Ignoring viscosity, calculate the difference APbetween the fluid pressure at Location 2 and the fluid pressure at Location 1.arrow_forwardAn oil drop has a density (?1) of (560+R) kg/m3. The terminal velocity of a spherical drop of thisoil falling in air at the room temperature is (15 + R) cm/s. At the room temperature, air density(?2) is 1.2 kg/m3and its viscosity is 18 μPa.s. Find the radius of the droplet. Consider g =9.81 ??arrow_forward
- Please just solve for question (b) i will be extremly appreciate!!!!!arrow_forwardQuestionNo.3 An approximated velocity profile for a laminar boundary layer is given as u(y) × Usin| 28 where U is the stream velocity far from the wall and 8 is the boundary layer thickness, as shown in Fig 2. If the fluid is helium (µ = 1.94 × 10-5N.s/m²) at 20°C and 1 atm, and if U = 10.8 m/s and ô= 3 cm, %3D use the formula to (a) Estimate the wall shear stress Tw in N/m2, and (b) Find the position in the boundary layer where t is one-half of Tw 2/2 U y = 8 u(y) Figure 2arrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License