Concept explainers
The stream function for steady, incompressible, two-dimensional flow over a circular cylinder of radius a and free-stream velocity
FIGURE P10-70
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
- In a 2D dimension incompressible flow , if the fluid velocity components are given by u = x-4y , v = -4x then stream function y is given byarrow_forwardA common flow encountered in practice is the crossflow of a fluid approaching a long cylinder of radius R at a free stream speed of U∞. For incompressible inviscid flow, the velocity field of the flow is given as in fig. Show that the velocity field satisfies the continuity equation, and determine the stream function corresponding to this velocity field.arrow_forwardConsider the velocity field represented by V = K (yĩ + xk) Rotation about z-axis isarrow_forward
- Consider a steady two-dimensional flow with the velocity field in the Cartesian coordinate system is given by u = -Ax and v = Ay, where A is a constant. Obtain the equation for a streamline and the equation for a streamfunction of the two-dimensional flow. What is the acceleration vector at (x.y) = (1,1)?arrow_forwardPlease answer botharrow_forwardIn a steady, two-dimensional flow field in the xyplane, the x-component of velocity is u = ax + by + cx2 where a, b, and c are constants with appropriate dimensions. Generate a general expression for velocity component ? such that the flow field is incompressible.arrow_forward
- a. Given the velocity field u=(u,v,w) in Cartesian coordinates with u=2x+y, v=2zt, w=0. i. Find the equations of the corresponding streamlines (Eulerian concept) ii. Find the equations of the corresponding particle paths, i.e., the pathlines (Lagrangian concept). b. Show that the Vu=0 everywhere implies that volumes are conserved, i.e., the volume of red particles at t-0 is the same as at t=t. Hint: Write out what you must prove and use the theorems to get there.arrow_forwardAy j. Is this a possible case of incompres- 3.9 A velocity field is given by V= Axyi -- %3D sible flow? If yes, obtain the stream function and find the value of constant A for which the flow rate between the streamlines passing through the points (3, 3) and (3, 4) is 18 units. Axy Ans: V = 12 + C, A 7 2arrow_forwardPravin bhaiarrow_forward
- Problem 1 Given a steady flow, where the velocity is described by: u = 3 cos(x) + 2ry v = 3 sin(y) + 2?y !! !! a) Find the stream function if it exists. b) Find the potential function if it exists. c) For a square with opposite diagonal corners at (0,0) and (47, 27), evaluate the circu- lation I = - f V.ds where c is a closed path around the square. d) Calculate the substantial derivative of velocity at the center of the same box.arrow_forwardConsider a two-dimensional flow which varies in time and is defined by the velocity field, u = 1 and v = 2yt. Compute the convective derivative of each velocity component: Du/Dt and Dv/Dt.arrow_forwardConsider fully developed Couette flow between two infinite parallel plates separated by distance h, with the top plate moving and the bottom plate stationary, as illustrated in the figure below. The flow is steady, incompressible, and two-dimensional in the XY plane. The velocity field is given by V }i = (u, v) = (v² )i +0j = V (a) Find out the acceleration field of this flow. (b) Is this flow steady? What are the u and v components of velocity? u= V² harrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY