FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 44P
To determine
The sum of the three scalar terms are constant along a streamline.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Select the correct answer
A proposed harmonic function F(x, y, z) is given byF = 2x2 + y3 - 4xz +f(y)(a) If possible, fi nd a function f (y) for which the laplacianof F is zero. If you do indeed solve part (a), can your fi nalfunction F serve as (b) a velocity potential or (c) a streamfunction?
An incompressible fluid of density ρ and viscosity μ flows down a plane inclined at an angle α.Assume constant gravitational acceleration downward, fully-developed flow, constant pressure inthe air outside the fluid, and zero stress exerted by the air on the fluid.
i) Starting from the incompressible Navier-Stokes equations, derive the differential equation andboundary conditions that govern the velocity u(y).
ii) Solve the equation from the previous part for u(y).
iii) Using your solution, calculate the following quantities: The mass flow rate (per unit depth) down the channel. The vorticity vector, ~ξ, and rate-of-strain tensor, epsilon at a point (x, y) in the channel. The shear stress exerted by the fluid on the bottom wall The viscous force in the fluid
iv) Consider a control volume consisting of a section of length L of the channel. Demonstratethat the conservation of x momentum holds for this control volume by integrating appropriatequantities over its perimeter and…
Chapter 10 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- a) Contsioer THE velbeine Fieb: V- xy i+ xyj (ij UNIT VECTORS AbNG X-, AND Y DIRECTTONS) IF THE FIUID DENSITY is CONOTANT, is CONSERVATION OF MASS SATİSFİED! CONSIDER THE FolbwiNG STREAM FUNCTION is THE Flow FielD IRROTATIONAL ? WHAT is THE VelocitY POTENTIAl ? C) CONSIDER THE STREAM FUNCTION DESCRIBING A Flow Field iN THE UPPER plaNE xy yoo. FOR THERE is A plATE @ y=0. ) i) is No-slip SATİS FIED @ PIATE (y=o) DRAW THE STREAMLINES FIND THE PRESSURE AS A FUNCTION OF THE PRESSURE O ORIGIN Po. (ASSOME NO GRAVitr).arrow_forwardQ1:: Explain all the terms of the Continuity Equation and their physical meanings with the help of examples.arrow_forwardfind mach and reynolds number and write out N-S eqnsarrow_forward
- A Fluid Mechanics, Third Edition - Free PDF Reader E3 Thumbnails 138 FLUID KINEMATICS Fluid Mechanies Fundamenteis and Applicationu acceleration); this term can be nonzero even for steady flows. It accounts for the effect of the fluid particle moving (advecting or convecting) to a new location in the flow, where the velocity field is different. For example, nunan A Çengel | John M. Cinbala consider steady flow of water through a garden hose nozzle (Fig. 4-8). We define steady in the Eulerian frame of reference to be when properties at any point in the flow field do not change with respect to time. Since the velocity at the exit of the nozzle is larger than that at the nozzle entrance, fluid particles clearly accelerate, even though the flow is steady. The accel- eration is nonzero because of the advective acceleration terms in Eq. 4-9. FLUID MECHANICS FIGURE 4-8 Flow of water through the nozzle of a garden hose illustrates that fluid par- Note that while the flow is steady from the…arrow_forwardpls answer question with steparrow_forwardQ4: Answer the following 1) If for a flow a stream function exists and satisfies the Laplace equation, then which of the following is the correct statement? (a) The flow is rotational (b) The flow is rotational and incompressible (c) The flow is irrotational and compressible (d)The flow is irrotational and incompressible |2) The boundary layer thickness for flow over a flat plate (a) decreases with an increase in the free stream velocity (b) increases with an increase in the free stream velocity (c) decreases with an increase in the kinematic viscosity 3) In the Fanno flow ,if the flow is supersonic ,a shock appears in the duct when (b) L > Lmax 4) An automotive wing is a device whose intended design is to generate (a) L = Lmax (c) L< Lmax ----------as air passes around it. 5) -- is a unit less value denotes how much an object resists movement through a fluid |6)Fluid accelerate or decelerates at any point in a variable area duct depends on ------ and 7) To decrease drag force it is…arrow_forward
- I'm looking forward to your solutionfluid mechanicsthanksarrow_forwardTHREE DIMENSIONAL ( NEED NEAT HANDWRITTEN SOLUTION ONLY OTHERWISE DOWNVOTE).arrow_forwardFind the vorticity of the fluid motion for the given velocity com- ponents. KINEMATICS OF FLUIDS (a) u A(x + y), v = - A(x + y) (b) u = 2Axz, (c) u Ay²+ By + C, v = A(c² + x² - z²) 1)=0arrow_forward
- How do you get from equation 3.1.1 to 3.1.5? I understand that yoy mutiply both sides by Ui, but I'm confused on the math that is done to bring Ui into the partial derivative. Please show all intermediate steps.arrow_forwardSolve the following points:arrow_forwardi didnt understand 3 fluid mechanics questions. please help me :) i will send of the three partarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license