Mechanics of Materials
Mechanics of Materials
9th Edition
ISBN: 9780133254426
Author: Russell C. Hibbeler
Publisher: Prentice Hall
bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.94RP

In the case of plane stress, where the in-plane principal strains are given by ε1 and ε2, show that the third principal strain can be obtained from

ε 3 = v ( ε + ε 2 ) ( 1 v )

where v is Poisson’s ratio for the material.

Expert Solution & Answer
Check Mark
To determine

To show that: The third principal strain can be obtained from ε3=ν(ε1+ε2)(1ν).

Answer to Problem 10.94RP

The third principal strain can be obtained from ε3=ν(ε1+ε2)(1ν)_ is proved.

Explanation of Solution

Given information:

The third principal strain ε3=ν(ε1+ε2)(1ν)

Explanation:

For the case of plane stress σ3=0.

Apply the normal strain in x direction as shown below.

ε1=1E(σ1ν(σ2+σ3))

Here, E is the modulus of elasticity, σ1 is the normal stress in x direction, ν is the Poisson’s ratio, σ2 is the normal stress in y direction, and σ3 is the normal stress in z direction.

Substitute 0 for σ3.

ε1=1E(σ1ν(σ2+0))=1E(σ1νσ2)Eε1=σ1νσ2

Multiply both sides of the Equation by ν.

νEε1=(σ1νσ2)ν=νσ1ν2σ2 (1)

Apply the normal strain in y direction as shown below.

ε2=1E(σ2ν(σ1+σ3))

Substitute 0 for σ3.

ε2=1E(σ2ν(σ1+0))=1E(σ2νσ1)Eε2=σ2νσ1 (2)

Apply the normal strain in z direction as shown below.

ε3=1E(σ3ν(σ1+σ2))

Substitute 0 for σ3.

ε3=1E(0ν(σ1+σ2))=1E(ν(σ1+σ2)) (3)

Adding Equation (1) and (2).

νEε1+Eε2=(νσ1ν2σ2)+(σ2νσ1)=νσ1ν2σ2+σ2νσ1=σ2(1ν2)E(νε1+ε2)=σ2(1ν2)

σ2=E(1ν2)(νε1+ε2)

Substitute E(1ν2)(νε1+ε2) for σ2 in Equation (2).

Eε2=E(1ν2)(νε1+ε2)νσ1νσ1=E(1ν2)(νε1+ε2)Eε2

σ1=1ν(E(νε1+ε2)(1ν2)Eε2(1ν2))=Eν(1ν2)(νε1+ε2ε2+ν2ε2)=Eν(1ν2)(νε1+ν2ε2)=E(1ν2)(ε1+νε2)

Substitute E(1ν2)(νε1+ε2) for σ2 and E(1ν2)(ε1+νε2) for σ1 in Equation (3).

ε3=1E(ν(E(1ν2)(ε1+νε2)+E(1ν2)(νε1+ε2)))=νEE(1ν2)(ε1+νε2+νε1+ε2)=ν(1ν)(1+ν)((1+ν)ε1+(1+ν)ε2)=ν(1+ν)(1ν)(1+ν)(ε1+ε2)

ε3=ν(1ν)(ε1+ε2)

Therefore, the third principal strain can be obtained from ε3=ν(ε1+ε2)(1ν)_ is proved.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.
Q1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 m
I need handwritten solution with sketches for each

Chapter 10 Solutions

Mechanics of Materials

Ch. 10.3 - 10–11. The state of strain on an element has...Ch. 10.3 - Determine the equivalent state of strain on an...Ch. 10.3 - Determine the equivalent state of strain which...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain, which...Ch. 10.3 - Prob. 10.17PCh. 10.3 - Prob. 10.18PCh. 10.3 - 10–19. Solve part (a) of Prob. 10–4 using Mohr’s...Ch. 10.3 - *10–20. Solve part (a) of Prob. 10–5 using Mohr’s...Ch. 10.3 - using Mohrs circle. 106. The state of strain at a...Ch. 10.5 - The strain at point A on the bracket has...Ch. 10.5 - Determine (a) the principal strains at A, (b) the...Ch. 10.5 - Prob. 10.24PCh. 10.5 - Prob. 10.25PCh. 10.5 - 10–26. The 60° strain rosette is attached to point...Ch. 10.5 - 10–27. The strain rosette is attached at the point...Ch. 10.5 - Prob. 10.28PCh. 10.6 - For the case of plane stress, show that Hookes law...Ch. 10.6 - to develop the strain tranformation equations....Ch. 10.6 - Determine the modulus of elasticity and Polssons...Ch. 10.6 - If it is subjected to an axial load of 15 N such...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - A strain gage having a length of 20 mm Is attached...Ch. 10.6 - Determine the bulk modulus for each of the...Ch. 10.6 - The strain gage is placed on the surface of the...Ch. 10.6 - 10–39. The strain in the x direction at point A on...Ch. 10.6 - Determine the applied load P. What is the shear...Ch. 10.6 - If a load of P = 3 kip is applied to the A-36...Ch. 10.6 - The cube of aluminum is subjected to the three...Ch. 10.6 - Prob. 10.43PCh. 10.6 - *10–44. Strain gauge b is attached to the surface...Ch. 10.6 - Prob. 10.45PCh. 10.6 - 10?46. The principal strains in a plane, measured...Ch. 10.6 - 10–47. The principal stresses at a point are shown...Ch. 10.6 - *10–48. The 6061-T6 aluminum alloy plate fits...Ch. 10.6 - Determine the normal stresses x and y in the plate...Ch. 10.6 - The steel shaft has a radius of 15 mm. Determine...Ch. 10.6 - Prob. 10.51PCh. 10.6 - Prob. 10.52PCh. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Prob. 10.55PCh. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - Prob. 10.58PCh. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - The yield stress for a zirconium-magnesium alloy...Ch. 10.7 - Solve Prob. 1061 using the maximum distortion...Ch. 10.7 - Prob. 10.63PCh. 10.7 - Prob. 10.64PCh. 10.7 - Prob. 10.65PCh. 10.7 - Prob. 10.66PCh. 10.7 - Prob. 10.67PCh. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - The short concrete cylinder having a diameter of...Ch. 10.7 - 10–70. Derive an expression for an equivalent...Ch. 10.7 - Prob. 10.71PCh. 10.7 - Prob. 10.72PCh. 10.7 - If the 2-in diameter shaft is made from brittle...Ch. 10.7 - If the 2-in diameter shaft is made from cast iron...Ch. 10.7 - 10–75. The components of plane stress at a...Ch. 10.7 - Prob. 10.76PCh. 10.7 - 10–77. If the A-36 steel pipe has outer and inner...Ch. 10.7 - Prob. 10.78PCh. 10.7 - Prob. 10.79PCh. 10.7 - Prob. 10.80PCh. 10.7 - Prob. 10.81PCh. 10.7 - Prob. 10.82PCh. 10.7 - Prob. 10.83PCh. 10.7 - Prob. 10.84PCh. 10.7 - 10–85. The state of stress acting at a critical...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - Prob. 10.87PCh. 10.7 - Prob. 10.88PCh. 10.7 - 10–89. The gas tank has an inner diameter of 1.50...Ch. 10.7 - The gas tank is made from A-36 steel and has an...Ch. 10.7 - The internal loadings at a critical section along...Ch. 10.7 - *10–92. The shaft consists of a solid segment AB...Ch. 10.7 - Prob. 10.93PCh. 10 - In the case of plane stress, where the in-plane...Ch. 10 - The plate is made of material having a modulus of...Ch. 10 - If the material is machine steel having a yield...Ch. 10 - Determine if yielding has occurred on the basis of...Ch. 10 - The 60 strain rosette is mounted on a beam. The...Ch. 10 - Use the strain transformation equations to...Ch. 10 - If the strain gages a and b at points give...Ch. 10 - Use the strain-transformation equations and...Ch. 10 - Use the strain transformation equations to...Ch. 10 - Specify the orientation of the corresponding...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY