![Chemistry Principles And Practice](https://www.bartleby.com/isbn_cover_images/9781305295803/9781305295803_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
Lewis structure has to be completed from the skeletal structure given below and the bond angles around the central atoms in the given structure have to be predicted using the VSEPR model.
Concept Introduction:
Lewis structure is used for predicting the shape of molecules. From the steric number obtained in a Lewis structure, the molecular geometry can be predicted. VSEPR model can predict the shape of molecules considering their Lewis structure. Certain rules has to be followed in for the VSEPR model.
- The molecule will have a shape where there is minimal electrostatic repulsion between the valence‑shell electron pairs.
- The forces of repulsion between two lone pairs of electrons will be higher than the repulsion between lone pair and bond pair of electrons. This in turn will be higher than the bond pair‑bond pair of electrons.
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Skeletal structure for the molecule given is shown;
The Lewis structure can be drawn considering the valence electrons in the molecule. Total number of valence electrons is calculated as shown below;
Eighteen electrons are used up in the skeletal structure. One electron pair is added to the terminal carbon atom each. Thus the Lewis structure can be drawn as follows;
Bond Angles:
Central atoms present in the above structure are four carbon atoms. The bond angles can be predicted using the steric number.
Steric number for carbon atom C-1:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is three. Therefore, steric number can be calculated as shown below;
As the steric number is three, the arrangement is trigonal planar and the bond angle will be
Steric number for carbon atom C-2:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is three. Therefore, steric number can be calculated as shown below;
As the steric number is three, the arrangement is trigonal planar and the bond angle will be
Steric number for carbon atom C-3:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is three. Therefore, steric number can be calculated as shown below;
As the steric number is three, the arrangement is trigonal planar and the bond angle will be
Steric number for carbon atom C-4:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is three. Therefore, steric number can be calculated as shown below;
As the steric number is three, the arrangement is trigonal planar and the bond angle will be
(b)
Interpretation:
Lewis structure has to be completed from the skeletal structure given below and the bond angles around the central atoms in the given structure have to be predicted using the VSEPR model.
Concept Introduction:
Refer part (a).
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Skeletal structure for the molecule given is shown;
The Lewis structure can be drawn considering the valence electrons in the molecule. Total number of valence electrons is calculated as shown below;
Twelve electrons are used up in the skeletal structure. Two carbon atoms are added with a lone pair of electrons. Thus the Lewis structure can be drawn as follows;
Bond Angles:
Central atoms present in the above structure are three carbon atoms. The bond angles can be predicted using the steric number.
Steric number for carbon atom C-1:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is two. Therefore, steric number can be calculated as shown below;
As the steric number is two, the arrangement is linear and the bond angle will be
Steric number for carbon atom C-2:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is two. Therefore, steric number can be calculated as shown below;
As the steric number is two, the arrangement is linear and the bond angle will be
Steric number for carbon atom C-3:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is four. Therefore, steric number can be calculated as shown below;
As the steric number is four, the arrangement is tetrahedral and the bond angle will be
(c)
Interpretation:
Lewis structure has to be completed from the skeletal structure given below and the bond angles around the central atoms in the given structure have to be predicted using the VSEPR model.
Concept Introduction:
Refer part (a).
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Skeletal structure for the molecule given is shown;
The Lewis structure can be drawn considering the valence electrons in the molecule. Total number of valence electrons is calculated as shown below;
Six electrons are used up in the skeletal structure. Three lone pair of electrons are placed on the chlorine atom each and a lone pair of electron is placed over the phosphorus atom. Thus the Lewis structure can be drawn as follows;
Bond Angles:
Central atom present in the above structure is a phosphorus. The bond angles can be predicted using the steric number.
Steric number for phosphorus:
The number of lone pair of electrons on phosphorus atom is one while the number of atoms that are bonded to phosphorus is three. Therefore, steric number can be calculated as shown below;
As the steric number is four, the arrangement is tetrahedral and the bond angle will be
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry Principles And Practice
- H2SO4 (cat.), H₂O 100 °C NH₂arrow_forwardX Draw the major products of the elimination reaction below. If elimination would not occur at a significant rate, check the box under the drawing area instead. ది www. Cl + OH Elimination will not occur at a significant rate. Click and drag to start drawing a structure.arrow_forwardNonearrow_forward
- 1A H 2A Li Be Use the References to access important values if needed for this question. 8A 3A 4A 5A 6A 7A He B C N O F Ne Na Mg 3B 4B 5B 6B 7B 8B-1B 2B Al Si P 1B 2B Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Ha ****** Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Analyze the following reaction by looking at the electron configurations given below each box. Put a number and a symbol in each box to show the number and kind of the corresponding atom or ion. Use the smallest integers possible. cation anion + + Shell 1: 2 Shell 2: 8 Shell 3: 1 Shell 1 : 2 Shell 2 : 6 Shell 1 : 2 Shell 2: 8 Shell 1: 2 Shell 2: 8arrow_forwardNonearrow_forwardIV. Show the detailed synthesis strategy for the following compounds. a. CH3CH2CH2CH2Br CH3CH2CCH2CH2CH3arrow_forward
- Do the electrons on the OH participate in resonance with the ring through a p orbital? How many pi electrons are in the ring, 4 (from the two double bonds) or 6 (including the electrons on the O)?arrow_forwardPredict and draw the product of the following organic reaction:arrow_forwardNonearrow_forward
- Redraw the molecule below as a skeletal ("line") structure. Be sure to use wedge and dash bonds if necessary to accurately represent the direction of the bonds to ring substituents. Cl. Br Click and drag to start drawing a structure. : ☐ ☑ Parrow_forwardK m Choose the best reagents to complete the following reaction. L ZI 0 Problem 4 of 11 A 1. NaOH 2. CH3CH2CH2NH2 1. HCI B OH 2. CH3CH2CH2NH2 DII F1 F2 F3 F4 F5 A F6 C CH3CH2CH2NH2 1. SOCl2 D 2. CH3CH2CH2NH2 1. CH3CH2CH2NH2 E 2. SOCl2 Done PrtScn Home End FA FQ 510 * PgUp M Submit PgDn F11arrow_forwardNonearrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)