Concept explainers
For an unbound (or “free”) particle having mass
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Physical Chemistry
- The Lyman series of spectral lines for the H atom, in the ultraviolet region, arises from transitions from higher levels to n = 1. Calculate the frequency and wavelength of the least energetic line in this series.arrow_forwardA normalized wavefunction for a particle confined between 0 and L in the x direction is ψ = (2/L)1/2 sin(πx/L). Suppose that L = 10.0 nm. Calculate the probability that the particle is (a) between x = 4.95 nm and 5.05 nm, (b) between x = 1.95 nm and 2.05 nm, (c) between x = 9.90 nm and 10.00 nm, (d) between x = 5.00 nm and 10.00 nm.arrow_forwardConsider a particle trapped in a 1D box with zero potential energy with walls at x = 0 and x = L. The general wavefunction solutions for this problem with quantum number, n, are: ψn(x) = sqrt(2/L sin(npix/L)) The corresponding energy (level) for each wavefunction solution is: En = (n^2h^2)/(8mL^2) Is the particle always uniformly distributed throughout the box? Explain your answer.arrow_forward
- Imagine a particle free to move in the x direction. Which of the following wavefunctions would be acceptable for such a particle? In each case, give your reasons for accepting or rejecting each function. (1) Þ(x) = x²; (iv) y(x) = x 5. (ii) ¥(x) = ; (v) (x) = e-* ; (iii) µ(x) = e-x²; (vi) p(x) = sinxarrow_forwardFor the system described in Exercise E7B.1(a) (A possible wavefunction for an electron in a region of length L (i.e. from x = 0 to x = L) is sin(2πx/L). Normalize this wavefunction (to 1)), what is the probability of finding the electron between x = L/4 and x = L/2?arrow_forwardFor the system described in Exercise E7B.1(a) (A possible wavefunction for an electron in a region of length L (i.e. from x = 0 to x = L) is sin(2πx/L). Normalize this wavefunction (to 1)), what is the probability of finding the electron in the range dx at x = L/2?arrow_forward
- 5arrow_forwardThe normalized wave function for a particle in a one- dimensional box in which the potential energy is zero is (x) = /2/L sin (nTx/L), where L is the length of the box (with the left wall at x = 0). What is the probability that the particle will lie between x = 0 and x = ticle is in its n = 2 state? L/4 if the par-arrow_forwardAn electron is confined to a square well of length L. What would be the length of the box such that the zero-point energy of the electron is equal to its rest mass energy, mec2? Express your answer in terms of the parameter λC = h/mec, the ‘Compton wavelength’ of the electron.arrow_forward
- Consider a particle in state n = 4 moving in a 1D box of length I = 1.0 angstrom (Å). What is the probability of finding the particle in the two middle quarters of the box? Show detailed computation.arrow_forwardThe average value for an operator is obtained by thearrow_forward5. Determine yy for each of the following wavefunctions: (i =V-1) a) y (x) = e b) y(0) = sin 0 +i cose c) w(x) = A · e*.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning