
Concept explainers
(a)
Interpretation: The constitutional isomer formed by the reaction of given alkene with [1]
Concept introduction: The compounds with same chemical formula but different arrangement of atoms in space are known as the constitutional isomer.
Hydration of

Answer to Problem 10.29P
The constitutional isomer formed by the reaction of given alkene with
Figure 1
The constitutional isomer formed by the reaction of given alkene with
Figure 2
Explanation of Solution
The compounds with same chemical formula but different arrangement of atoms in space are known as the constitutional isomer.
Hydration of alkenes is one of the methods used for the formation of alcohol.
Hydroboration reaction is a two step reaction, which involves conversion of alkene into alcohol. This type of reaction follows Anti-Markovnikov’s rule.
In hydration reactions, the mode of addition is anti-addition, whereas in hydroboration-oxidation, the mode of addition is syn addition.
The given alkene is,
Figure 3
The product formed by the reaction of methylenecyclopentane with
Figure 4
The general steps followed by the hydration reaction are stated below:
• First protonation of the alkene take place to generate the carbocation.
• Formation of protonated alcohol.
• Deprotonation.
The product formed by the reaction of methylenecyclopentane with
Figure 5
The constitutional isomer formed by the reaction of given alkenes with [1]
(b)
Interpretation: The constitutional isomer formed by the reaction of given alkenes with [1]
Concept introduction: The compounds with same chemical formula but different arrangement of atoms in space are known as the constitutional isomer.
Hydration of alkenes is one of the methods used for the formation of alcohol.

Answer to Problem 10.29P
The constitutional isomer formed by the reaction of given alkenes with
Figure 6
The constitutional isomer formed by the reaction of given alkenes with
Figure 7
Explanation of Solution
The compounds with same chemical formula but different arrangement of atoms in space are known as the constitutional isomer.
Hydration of alkenes is one of the methods used for the formation of alcohol.
Hydroboration reaction is a two step reaction, which involves conversion of alkene into alcohol. This type of reaction follows Anti-Markovnikov’s rule.
In hydration reactions, the mode of addition is anti-addition, whereas in hydroboration-oxidation, the mode of addition is syn addition.
The given alkene is,
Figure 8
The product formed by the reaction of
Figure 9
The general steps followed by the hydration reaction are stated below:
• First protonation of the alkene take place to generate the carbocation.
• Formation of protonated alcohol.
• Deprotonation.
The product formed by the reaction of
Figure 10
The constitutional isomer formed by the reaction of given alkenes with [1]
(c)
Interpretation: The constitutional isomer formed by the reaction of given alkene with [1]
Concept introduction: The compounds with same chemical formula but different arrangement of atoms in space are known as the constitutional isomer.
Hydration of alkenes is one of the methods used for the formation of alcohol.

Answer to Problem 10.29P
The constitutional isomer formed by the reaction of given alkene with
Figure 11
The constitutional isomer formed by the reaction of given alkene with
Figure 12
Explanation of Solution
The compounds with same chemical formula but different arrangement of atoms in space are known as the constitutional isomer.
Hydration of alkenes is one of the methods used for the formation of alcohol.
Hydroboration reaction is a two step reaction, which involves conversion of alkene into alcohol. This type of reaction follows Anti-Markovnikov’s rule.
In hydration reactions, the mode of addition is anti-addition, whereas in hydroboration-oxidation, the mode of addition is syn addition.
The given alkene is,
Figure 13
The product formed by the reaction of methylenecyclopentane with
Figure 14
The general steps followed by the hydration reaction are stated below:
• First protonation of the alkene take place to generate the carbocation.
• Formation of protonated alcohol.
• Deprotonation.
The product formed by the reaction of methylenecyclopentane with
Figure 15
The constitutional isomer formed by the reaction of given alkenes with [1]
Want to see more full solutions like this?
Chapter 10 Solutions
PKG ORGANIC CHEMISTRY
- Use the literature Ka value of the acetic acid, and the data below to answer these questions. Note: You will not use the experimental titration graphs to answer the questions that follow. Group #1: Buffer pH = 4.35 Group #2: Buffer pH = 4.70 Group #3: Buffer pH = 5.00 Group #4: Buffer pH = 5.30 Use the Henderson-Hasselbalch equation, the buffer pH provided and the literature pKa value of acetic acid to perform the following: a) calculate the ratios of [acetate]/[acetic acid] for each of the 4 groups buffer solutions above. b) using the calculated ratios, which group solution will provide the best optimal buffer (Hint: what [acetate]/[acetic acid] ratio value is expected for an optimal buffer?) c) explain your choicearrow_forwardHow would you prepare 1 liter of a 50 mM Phosphate buffer at pH 7.5 beginning with K3PO4 and 1 M HCl or 1 M NaOH? Please help and show calculations. Thank youarrow_forwardDraw the four most importantcontributing structures of the cation intermediate thatforms in the electrophilic chlorination of phenol,(C6H5OH) to form p-chlorophenol. Put a circle aroundthe best one. Can you please each step and also how you would approach a similar problem. Thank you!arrow_forward
- A 100mM lactic acid/lactate buffer was found to have a lactate to lactic acid ratio of 2 and a pH of 4.2. What is the pKa of lactic acid? Can you please help show the calculations?arrow_forwardUsing line angle formulas, draw thestructures of and name four alkanes that have total of 7carbons, one of which is tertiary.Please explain this in detail and can you also explain how to approach a similar problem like this as well?arrow_forwardUsing dashed line wedge projections drawthe indicated compounds and indicate whether thecompound you have drawn is R or S.(a) The two enantiomers of 2-chlorobutane. Can you please explain your steps and how you would approach a similar problem. Thank you!arrow_forward
- 5) There are no lone pairs shown in the structure below. Please add in all lone pairs and then give the hybridization scheme for the compound. (8) 10,11 7) 1.2.3 H 4 | 14 8) COC 12 13 H 16 15 H7 9) - 5.6 C 8 H 10) H 1). 2) 3)_ 11) 12) 13) 4)_ 14) 5) 15) 16) 6)arrow_forwardThe sum of the numbers in the name of isA. 11; B. 13; C. 10; D. 12; E. none of the other answers iscorrect. I believe the awnser should be E to this problem but the solution to this problem is D 12. I'm honestly unsure how that's the solution. If you can please explain the steps to this type of problem and how to approach a problem like this it would be greatly appreciated!arrow_forwardConsider the following data for phosphorus: g atomic mass 30.974 mol electronegativity 2.19 kJ electron affinity 72. mol kJ ionization energy 1011.8 mol kJ heat of fusion 0.64 mol You may find additional useful data in the ALEKS Data tab. Does the following reaction absorb or release energy? 2+ + (1) P (g) + e → P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (1) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (1): Does the following reaction absorb or release energy? 00 release absorb Can't be decided with the data given. yes no ☐ kJ/mol (²) P* (8) + + + e →>> P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (2) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (2): ☐ release absorb Can't be decided with the data given. yes no kJ/mol аarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





