Given that the order of molecular orbitals for NO is similar to that for O2, arrange the following species in increasing bond orders: NO2−, NO−, NO, NO+, NO2+.
Interpretation: The given species have to be arranged in the increasing order of their bond order.
Concept Introduction:
Bond order:
Bond order determines the number of bonds in the pair of two atoms. So, it is the quantitative measure of a bond.
The bond order can be calculated as follows:
Trends in the bond order:
The species with the negative charge means that electrons are getting added in the anti-bonding molecular orbital. So the number of electrons in the anti-bonding molecular orbital increases accordingly. Ultimately, the bond order decreases. Whereas, the species with the positive charge means that electrons are being removed from the anti-bonding molecular orbital. So the number of electrons in the anti-bonding molecular orbital decreases accordingly. Ultimately, the bond order increases.
Answer to Problem 10.124QP
The given species can be arranged in the increasing order of their bond order as follows:
Explanation of Solution
Given: The order of molecular orbitals of
The molecular orbitals of
The molecular orbital configuration of
Bond order of
The molecular orbitals of
The bond order of
Similarly, the bond orders can be calculated for each of the given species as follows:
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
The calculated bond orders can be tabulated as follows:
Given molecule | Bond order. |
1.5 | |
2 | |
2.5 | |
3 | |
2.5 |
Based on this tabulation, the given species can be arranged in the increasing order of their bond order as follows:
The given species have been arranged in the increasing order of their bond order.
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry
- Don't used Ai solutionarrow_forwardLet's see if you caught the essentials of the animation. What is the valence value of carbon? a) 4 b) 2 c) 8 d) 6arrow_forwardA laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forward
- A laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forwardThe number of microstates corresponding to each macrostate is given by N. The dominant macrostate or configuration of a system is the macrostate with the greatest weight W. Are both statements correct?arrow_forwardFor the single step reaction: A + B → 2C + 25 kJ If the activation energy for this reaction is 35.8 kJ, sketch an energy vs. reaction coordinate diagram for this reaction. Be sure to label the following on your diagram: each of the axes, reactant compounds and product compounds, enthalpy of reaction, activation energy of the forward reaction with the correct value, activation energy of the backwards reaction with the correct value and the transition state. In the same sketch you drew, after the addition of a homogeneous catalyst, show how it would change the graph. Label any new line "catalyst" and label any new activation energy.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning