Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 7P
If the
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A light-year is the distance that light can travel in one year. Similarly, we can define a light-second, light-day, etc. as the distance that light can travel in other time intervals. Calculate the distance represented by each of the following: (Assume that the speed of light is 3 × 108 m/s).
1. 4 light-seconds
2. 3 light-minutes
3. 2 light-days
4. 2 light-days, but this time answer in miles (enter just the number with no units)
(the complete question is in the picture)
If the Newtonian constant has units G = [N · m2/kg2], the speed of light has units c = [m/s], the mass has units M = [kg] and the SI unit newtons is equivalentto N = [kg · m/s2], what are the units of the relation GM/c3?A. [kg · s]B. [kg · m2/s]C. [m2/s]D. [s]
I'm having trouble completing the problem I've attached a picture of below. I was able to find the the Earth's average speed in m/s relative to the sun by doing (2pi*(1.49x10^11))/31536000. But I am struggling to find the average velocity for the same thing over a period of one year in m/s. I was wondering how to calculate that? I've tried doing the (final velocity-initial velocity)/2 but the program doesn't accept my answer when using that approach.
Chapter 1 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 1 - What is the largest dimension of which you have...Ch. 1 - What is the difference between our Solar System,...Ch. 1 - Why are light-years more convenient than miles,...Ch. 1 - Why is it difficult to detect planets orbiting...Ch. 1 - Prob. 5RQCh. 1 - What is the difference between the Milky Way and...Ch. 1 - What are the largest known structures in the...Ch. 1 - Prob. 8RQCh. 1 - How Do We Know? How does the scientific method...Ch. 1 - You and three of your friends have won an...
Ch. 1 - Think back to the last time you got a new phone...Ch. 1 - The diameter of Earth across the equator is 7928...Ch. 1 - The diameter of the Moon across its equator is...Ch. 1 - One astronomical unit is about 1.50108 km. Explain...Ch. 1 - Venus orbits 0.72 AU from the Sun. What is that...Ch. 1 - Light from the Sun takes 8 minutes to reach Earth....Ch. 1 - The Sun is almost 400 times farther from Earth...Ch. 1 - If the speed of light is 3.00105 km/s. how many...Ch. 1 - How long does it take light to cross the diameter...Ch. 1 - The nearest large galaxy to our n is about 2.5...Ch. 1 - How many galaxies like our own would it take Laid...Ch. 1 - In Figure 1-4, the division between daylight and...Ch. 1 - Prob. 2LTLCh. 1 - Prob. 3LTLCh. 1 - Prob. 4LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose we find an Earth-like planet around one of our nearest stellar neighbors, Alpha Centauri (located only 4.4 light-years away). If we launched a "generation ship" at a constant speed of 1500.00 km/s from Earth with a group of people whose descendants will explore and colonize this planet, how many years before the generation ship reached Alpha Centauri? (Note there are 9.46 ××1012 km in a light-year and 31.6 million seconds in a year.arrow_forwardHow many seconds are there in one light-year? 1 year = 365 days 3.15 x 105 seconds 3.15 x 106 seconds 3.15 x 107 seconds This makes absolutely no sensearrow_forwardRecent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R=13.7x109 light-years=13.0 x 1025m with an average total mass density of about 1x10-26 kg/m3 Only about 4% of total mass is due to “ordinary” matter (such as protons, neutrons, and electrons). Estimate how much ordinary matter (in kg) there is in the observable universe. (For the light-year, see Problem 19.)arrow_forward
- Light travels at 2.9979 x 10^10 cm/s. How far would light travel in a year? (USE SYMBOL ^ FOR EXPONENT. ROUND OFF ANSWER TO FOUR DECIMAL PLACES)arrow_forwardCalculate the number of miles in a light-year, using 1.86 105 mi/s as the speed of light. (Hint: The number of seconds in a year, 365 days, will be useful.) Answer in mi/yarrow_forwardThe Planck time is the unique interval of time that can be built out of G, c, and h. Some physicists think that time intervals shorter than the Planck time have no meaning. Using G = 6.7 x 10-11 kg-1 m3 s-2, c = 3 x 108 m s-1, and h = 6.6 x 10-34 kg m2 s-1, calculate the Planck time, in units of 10-43 s.arrow_forward
- The moon is 1.3 light-seconds away. Imagine you are standing at the Canadian Space Agency headquarters in St. Hubert, Quebec and you bounce a 755 MHz radio signal off the moon (the moon acts like a mirror, reflecting the signal, such that it comes back to you). How long will it take for that radio signal to get back to you on earth? Answer in seconds with one decimal place.arrow_forwardquestion 1: parts A, B, and C pleasearrow_forwardCalculate the number of miles in a light year using (see picture for the equation) mi/s as the speed. Hint: The number of seconds in a year,365days,will be useful.arrow_forward
- A speck of carbon dust may contain as many as 30 billion atoms of carbon, each atom having a mass of 2.00 x 10-23 grams. Suppose the mass of all the atoms in a speck of carbon dust were converted entirely to energy and applied to the kinetic energy of a baseball. How fast would the baseball be moving? (Mass of baseball = 0.145 kg. ) (1 gram = 1 x 103kg) (KE = ½ mv2) (1 billion = 1 x 109)arrow_forwardA mole contains 6.02 * 1023 particles (atoms, molecules, etc.). If you wanted to reach Alpha Centauri (4.367 light-years away) by creating a strand of carbon atoms (0.3 nm diameter), how many moles of carbon would you need? (Note: 1 light-year = 9.46 * 1012km)arrow_forwardA star has an element in its atmosphere that normally emits a line of frequency fs = 7.5 x 10^14 vib/s. If astronomers measure the frequency of this line to be fo = 7.7 x 10^14 vib/s, then how fast are the Earth and this star traveling relative to each other? Remember that the correct equation for the speed v is given by v = [(fo^2 - fs^2) / (fo^2 + fs^2)] c Remember fo^2 means "fo squared."arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY