Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 4RQ
Why is it difficult to detect planets orbiting other stars?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Doppler shift lets you see a star
move back and forth.
look larger and smaller.
look bluer and redder-but the shift is extremely small and is visible only if is moving towards
and away from you, so it only works from certain viewing angles.
O look brighter and dimmer.
O The Doppler shift brightens up a dim planet so you can see it.
One way that astronomers detect planets outside of our solar system (called exoplanets) is commonly referred to as the radial velocity method. This relies on the __________ ___________ to cause shifts in the spectral lines of stars as the stars perform tiny orbits around the center of mass of the host star and its orbiting planets. Those tiny orbits cause the stars to periodically (and therefore predictably) move closer to and further away from our solar system. Luckily, this method only relies on the motion of the star; its physical distance from us does not impact the resulting shifts.
A certain binary system consists of two stars that have equal masses and revolve in circular orbits around a fixed point half-way between them.
If the orbital velocity of each star is v=186 km/s and the orbital period of each is 11.3 days, calculate the mass M of each star. Give your answer in units of the solar mass, 1.99×1030 kg (e.g. if each planet's mass is 3.98×1030 kg, you would answer "2.00").
Chapter 1 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 1 - What is the largest dimension of which you have...Ch. 1 - What is the difference between our Solar System,...Ch. 1 - Why are light-years more convenient than miles,...Ch. 1 - Why is it difficult to detect planets orbiting...Ch. 1 - Prob. 5RQCh. 1 - What is the difference between the Milky Way and...Ch. 1 - What are the largest known structures in the...Ch. 1 - Prob. 8RQCh. 1 - How Do We Know? How does the scientific method...Ch. 1 - You and three of your friends have won an...
Ch. 1 - Think back to the last time you got a new phone...Ch. 1 - The diameter of Earth across the equator is 7928...Ch. 1 - The diameter of the Moon across its equator is...Ch. 1 - One astronomical unit is about 1.50108 km. Explain...Ch. 1 - Venus orbits 0.72 AU from the Sun. What is that...Ch. 1 - Light from the Sun takes 8 minutes to reach Earth....Ch. 1 - The Sun is almost 400 times farther from Earth...Ch. 1 - If the speed of light is 3.00105 km/s. how many...Ch. 1 - How long does it take light to cross the diameter...Ch. 1 - The nearest large galaxy to our n is about 2.5...Ch. 1 - How many galaxies like our own would it take Laid...Ch. 1 - In Figure 1-4, the division between daylight and...Ch. 1 - Prob. 2LTLCh. 1 - Prob. 3LTLCh. 1 - Prob. 4LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is it so hard to see planets around other stars and so easy to see them around our own?arrow_forwardAn exoplanetary system has two known planets. Planet X orbits in 290 days and Planet Y orbits in 145 days. Which planet is closest to its host star? If the star has the same mass as the Sun, what is the semi-major axis of the orbits for Planets X and Y?arrow_forwardWhy were giant planets close to their stars the first ones to be discovered? Why has the same technique not been used yet to discover giant planets at the distance of Saturn?arrow_forward
- The light a planet receives from the Sun (per square meter of planet surface) decreases with the square of the distance from the Sun. So a planet that is twice as far from the Sun as Earth receives (1/2)2=0.25 times (25%) as much light and a planet that is three times as far from the Sun receives (1/3)2=0.11 times (11%) as much light. How much light is received by the moons of Jupiter and Saturn (compared to Earth), worlds which orbit 5.2 and 9.5 times farther from the Sun than Earth?arrow_forwardthe co te on Pictor. The 270 TOI System TOI 270 c Earth 365-day orbit $1 AU from Sun Habitable 5.7-day orbit 0.05 AU $2.4 Earth radii Largest in system 59 F, 15 C 300 F, 150 C TOI 270 TOI 270 d M3-type dwarf star TOI 270 b $11.4-day orbit 0.07 AU 3.4-day orbit 2.1 Earth radii 0.03 AU Temperate 1.25 Earth radii Likely rocky 150 F. 67 C 490 F. 254 C Figure taken from https://exoplanets.nasa.gov/news/1593/tess-scores-hat-trick-with-3-new-worlds/ What makes the TOI-270 system particularly interesting is that the three exoplanets detected this far (there may be more) have sizes comparable to the Earth. Compare the orbital period of TOI 270 c and TOI 270 d. For every revolution that TOI 270 d makes around the host star TOI 270, how many revolutions does TOI 270 c make?arrow_forwardConsider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06arrow_forward
- Which of these views cannot be used when trying to detect exoplanets using the radial velocity method? XYZ all of these can be observed using the radial velocity method none of these can be observed using the radial velocity method? X Y Z all of these can be observed using the radial velocity method none of these can be observed using the radial velocity method Figure X to Earth Figure Y to Earth Figure Z to Earth Which of the systems above could not be detected using the transit method?arrow_forwardWhat would be the angular diameter (in arc seconds) of a planet with diameter 8.5 x 105 km and orbital distance from it's star of 175 x 108 km as seen from a planet with. orbital distance from the same star of 70 x 107 km as seen from their closest approach?arrow_forwardTime From this light curve, we can deduce that... O the star has a high mass exoplanet orbiting it O the star has an exoplanet orbiting it that has an eccentric orbit O the star has an exoplanet orbiting it that has an eccentric orbit O the star has an exoplanet that is not on the same orbital plane as the star L Brightnessarrow_forward
- Solve the following problem: Two stars, named A and B, each with a mass equal to the Sun's mass are in orbit around each other. If the distance between the two stars is 1.0 AU. What is the period of their orbit? Describe each step in solving the problem:arrow_forwardThe International Space Station is about 90 meters across and about 380 kilometers away. One night it appears to be the same angular size as Jupiter. Jupiter is 143,000 km in size. Use S = r x a to figure out how far away Jupiter is in AU. Note 1 AU = 1.5 x 108 kmarrow_forwardThe microlensing technique for detecting extrasolar planets involves obtaining OBSERVING brightness measurements of a star and identifying brief, periodic dips in its brightness infrared images of a planet with the light from its host star blocked out a spectrum of a star and identifying periodic wavelength shifts in its features brightness measurements of a star and identifying a brief magnification in its brightness a spectrum of an extrasolar planet and identifying elements and compounds present in its atmospherearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY