Chemical Principles: The Quest for Insight
7th Edition
ISBN: 9781464183959
Author: Peter Atkins, Loretta Jones, Leroy Laverman
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 1B.14E
Interpretation Introduction
Interpretation:
The temperature at the surface of the star that emits light with maximum intensity at
Concept Introduction:
Wien’s law:
The mathematical form of Wien’s law can be represented as given below.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Chemical Principles: The Quest for Insight
Ch. 1 - Prob. 1A.1ASTCh. 1 - Prob. 1A.1BSTCh. 1 - Prob. 1A.2ASTCh. 1 - Prob. 1A.2BSTCh. 1 - Prob. 1A.1ECh. 1 - Prob. 1A.3ECh. 1 - Prob. 1A.4ECh. 1 - Prob. 1A.5ECh. 1 - Prob. 1A.6ECh. 1 - Prob. 1A.7E
Ch. 1 - Prob. 1A.8ECh. 1 - Prob. 1A.9ECh. 1 - Prob. 1A.10ECh. 1 - Prob. 1A.11ECh. 1 - Prob. 1A.12ECh. 1 - Prob. 1A.13ECh. 1 - Prob. 1A.14ECh. 1 - Prob. 1A.15ECh. 1 - Prob. 1A.16ECh. 1 - Prob. 1A.17ECh. 1 - Prob. 1B.1ASTCh. 1 - Prob. 1B.1BSTCh. 1 - Prob. 1B.2ASTCh. 1 - Prob. 1B.2BSTCh. 1 - Prob. 1B.3ASTCh. 1 - Prob. 1B.3BSTCh. 1 - Prob. 1B.4ASTCh. 1 - Prob. 1B.4BSTCh. 1 - Prob. 1B.5ASTCh. 1 - Prob. 1B.5BSTCh. 1 - Prob. 1B.1ECh. 1 - Prob. 1B.2ECh. 1 - Prob. 1B.3ECh. 1 - Prob. 1B.4ECh. 1 - Prob. 1B.5ECh. 1 - Prob. 1B.6ECh. 1 - Prob. 1B.7ECh. 1 - Prob. 1B.8ECh. 1 - Prob. 1B.9ECh. 1 - Prob. 1B.10ECh. 1 - Prob. 1B.11ECh. 1 - Prob. 1B.12ECh. 1 - Prob. 1B.13ECh. 1 - Prob. 1B.14ECh. 1 - Prob. 1B.15ECh. 1 - Prob. 1B.16ECh. 1 - Prob. 1B.17ECh. 1 - Prob. 1B.18ECh. 1 - Prob. 1B.19ECh. 1 - Prob. 1B.21ECh. 1 - Prob. 1B.22ECh. 1 - Prob. 1B.23ECh. 1 - Prob. 1B.24ECh. 1 - Prob. 1B.25ECh. 1 - Prob. 1B.26ECh. 1 - Prob. 1B.27ECh. 1 - Prob. 1B.28ECh. 1 - Prob. 1C.1ASTCh. 1 - Prob. 1C.1BSTCh. 1 - Prob. 1C.1ECh. 1 - Prob. 1C.2ECh. 1 - Prob. 1C.3ECh. 1 - Prob. 1C.7ECh. 1 - Prob. 1D.1ASTCh. 1 - Prob. 1D.1BSTCh. 1 - Prob. 1D.2ASTCh. 1 - Prob. 1D.2BSTCh. 1 - Prob. 1D.1ECh. 1 - Prob. 1D.2ECh. 1 - Prob. 1D.3ECh. 1 - Prob. 1D.4ECh. 1 - Prob. 1D.5ECh. 1 - Prob. 1D.6ECh. 1 - Prob. 1D.7ECh. 1 - Prob. 1D.9ECh. 1 - Prob. 1D.10ECh. 1 - Prob. 1D.11ECh. 1 - Prob. 1D.12ECh. 1 - Prob. 1D.13ECh. 1 - Prob. 1D.14ECh. 1 - Prob. 1D.15ECh. 1 - Prob. 1D.16ECh. 1 - Prob. 1D.17ECh. 1 - Prob. 1D.18ECh. 1 - Prob. 1D.19ECh. 1 - Prob. 1D.20ECh. 1 - Prob. 1D.21ECh. 1 - Prob. 1D.22ECh. 1 - Prob. 1D.23ECh. 1 - Prob. 1D.24ECh. 1 - Prob. 1D.25ECh. 1 - Prob. 1D.26ECh. 1 - Prob. 1E.1ASTCh. 1 - Prob. 1E.1BSTCh. 1 - Prob. 1E.2ASTCh. 1 - Prob. 1E.2BSTCh. 1 - Prob. 1E.1ECh. 1 - Prob. 1E.2ECh. 1 - Prob. 1E.3ECh. 1 - Prob. 1E.4ECh. 1 - Prob. 1E.5ECh. 1 - Prob. 1E.7ECh. 1 - Prob. 1E.8ECh. 1 - Prob. 1E.9ECh. 1 - Prob. 1E.10ECh. 1 - Prob. 1E.11ECh. 1 - Prob. 1E.12ECh. 1 - Prob. 1E.13ECh. 1 - Prob. 1E.14ECh. 1 - Prob. 1E.15ECh. 1 - Prob. 1E.16ECh. 1 - Prob. 1E.17ECh. 1 - Prob. 1E.18ECh. 1 - Prob. 1E.19ECh. 1 - Prob. 1E.20ECh. 1 - Prob. 1E.21ECh. 1 - Prob. 1E.22ECh. 1 - Prob. 1E.23ECh. 1 - Prob. 1E.24ECh. 1 - Prob. 1E.25ECh. 1 - Prob. 1E.26ECh. 1 - Prob. 1F.1ASTCh. 1 - Prob. 1F.1BSTCh. 1 - Prob. 1F.2ASTCh. 1 - Prob. 1F.2BSTCh. 1 - Prob. 1F.3BSTCh. 1 - Prob. 1F.1ECh. 1 - Prob. 1F.2ECh. 1 - Prob. 1F.3ECh. 1 - Prob. 1F.4ECh. 1 - Prob. 1F.5ECh. 1 - Prob. 1F.6ECh. 1 - Prob. 1F.7ECh. 1 - Prob. 1F.8ECh. 1 - Prob. 1F.10ECh. 1 - Prob. 1F.11ECh. 1 - Prob. 1F.12ECh. 1 - Prob. 1F.13ECh. 1 - Prob. 1F.14ECh. 1 - Prob. 1F.15ECh. 1 - Prob. 1F.17ECh. 1 - Prob. 1F.18ECh. 1 - Prob. 1F.19ECh. 1 - Prob. 1F.22ECh. 1 - Prob. 1.1ECh. 1 - Prob. 1.2ECh. 1 - Prob. 1.3ECh. 1 - Prob. 1.9ECh. 1 - Prob. 1.10ECh. 1 - Prob. 1.11ECh. 1 - Prob. 1.12ECh. 1 - Prob. 1.13ECh. 1 - Prob. 1.14ECh. 1 - Prob. 1.15ECh. 1 - Prob. 1.17ECh. 1 - Prob. 1.19ECh. 1 - Prob. 1.21ECh. 1 - Prob. 1.22ECh. 1 - Prob. 1.23ECh. 1 - Prob. 1.24ECh. 1 - Prob. 1.25ECh. 1 - Prob. 1.27ECh. 1 - Prob. 1.28ECh. 1 - Prob. 1.31E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A baseball weighs 142 g. A professional pitcher throws a fast ball at a speed of 100 mph and a curve ball at 80 mph. What wavelengths are associated with the motions of the baseball? If the uncertainty in the position of the ball is 12 wavelength, which ball (fast ball or curve) has a more precisely known position? Can the uncertainty in the position of a curve ball be used to explain why batters frequently miss it?arrow_forwardThis laser emits green light with a wavelength of 533 nm. (a) What is the energy, in joules, of one photon of light at this wavelength? (b) If a particular laser produces 1.00 watt (W) of power (1 W = 1 J/s), how many photons are produced each second by the laser?arrow_forward(a) Which color in the visible spectrum has the highest frequency? Which has the lowest frequency? (b) Is the wavelength of the radiation used in a microwave oven (2.45 GHz) longer or shorter than that from your favorite FM radio station (for example, 91.7 MHz)? (c) Are the wavelengths of x-rays longer or shorter than those of ultraviolet light? (d) Calculate the frequency of green light with a wavelength of 510. nm.arrow_forward
- 6.9 If a string of decorative lights includes bulbs with wave-lengths of 480, 580, and 700 mm, what are the frequencies of the lights? Use Figure 6.6 to determine which colors are in the set.arrow_forwardInvestigating Energy Levels Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E=RHn3 where RH is the same as for hydrogen (2.179 1018 J). Answer the following questions, without calculating energy values. a How would the ground-state energy levels of X and H compare? b Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer. c How do the spacings of the energy levels of X and H compare? d Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom? e Which atom, X or H, would require more energy to completely remove its electron? f A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 12 to n = 5) in an atom of X? Explain.arrow_forwardOzone in the stratosphere absorbs ultraviolet light of wavelengths shorter than 320 nm, thus filtering out the most energetic radiation from sunlight. During this absorption, an ozone molecule absorbs a photon, which breaks an oxygen-oxygen bond, yielding an oxygen molecule and an oxygen atom: O3(g)+hvO2(g)+O(g) (Here, hv denotes a photon.) Suppose a flask of ozone is irradiated with a pulse of UV light of wavelength 275 nm. Assuming that each photon of this pulse that is absorbed breaks up one ozone molecule, calculate the energy absorbed per mole of O2 produced, giving the answer in kJ/mol.arrow_forward
- The figure below represents part of the emission spectrum for a one-electron ion in the gas phase. All the lines result from electronic transitions from excited states to the n 3 state. (See Exercise 174.) a. What electronic transitions correspond to lines A and B? b. If the wavelength of line B is 142.5 nm, calculate the wavelength of line A.arrow_forward6.17 The laser in most supermarket barcode scanners operates at a wavelength of 632.8 nm. What is the energy of a single photon emitted by such a laser? What is the energy of one mole of these photons?arrow_forwardWarm objects emit electromagnetic radiation in the infrared region. Heat lamps employ this principle to generate infrared radiation. Water absorbs infrared radiation with wavelengths near 2.80 m. Suppose this radiation is absorbed by the water and converted to heat. A 1.00-L sample of water absorbs infrared radiation, and its temperature increases from 20.0C to 30.0C. How many photons of this radiation are used to heat the water?arrow_forward
- The lasers used in supermarket scanners emit red light at a wavelength of 633 nm. Compact disc players use lasers that emit light (that is not visible) at 840 nm. Which photonsthose emitted by supermarket scanners or compact disc (CD) playerscontain more energy per photon? Supermarket scanners CD players They both contain the same amount of energy per photon.arrow_forwardThe eyes of certain reptiles pass a single visual signal to the brain when the visual receptors are struck by photons of a wavelength of 850 nm. If a total energy of 3.151014 J is required to trip the signal, what is the minimum number of photons that must strike the receptor?arrow_forwardAs the weapons officer aboard the Srarship Chemistry, it is your duty to configure a photon torpedo to remove an electron from the outer hull of an enemy vessel. You know that the work function (the binding energy of the electron) of the hull of the enemy ship is 7.52 1019 J. a. What wavelength does your photon torpedo need to be to eject an electron? b. You find an extra photon torpedo with a wavelength of 259 nm and fire it at the enemy vessel. Does this photon torpedo do any damage to the ship (does it eject an electron)? c. If the hull of the enemy vessel is made of the element with an electron configura tion of [Ar]4s13d10, what metal is this?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY