(a)
Interpretation:
Using the van der Waals constants given in Table 1.6, the molar volumes of krypton, Kr is to be calculated at 25 °C and 1 bar pressure.
Concept introduction:
The
Answer to Problem 1.79E
The molar volumes of (a) krypton, Kr is calculated at 25 °C and 1 bar pressure as follows;
Van der Waals constant for Krypton a = 2.318 atm L2/mol2;
b = 0.03978 L/mol
Boyle temperature,
Molar volume for krypton
Explanation of Solution
The non-ideal gas equation represented as;
In the above equation,
[p+ an2/V2] Correction term introduced for molecular attraction
[V– nb] correction term introduced for volume of molecules
‘a’ and ‘b’ are called as van der Waals constants
a = the pressure correction and it is related to the magnitude and strength of the interactions between gas particles.
b = the volume correction and it is having relationship to the size of the gas particles.
Given;
Van der Waals constant for Krypton a =
Boyle temperature
=
= 711.04 K
At Boyle temperature, the second virial coefficient B is zero. Thus, for one mole of krypton the molar volume is, at one bar pressure
Using the van der Waals constants given in Table 1.6, the molar volumes of krypton, Kr is calculated at 25 °C and 1 bar pressure.
(b)
Interpretation:
Using the van der Waals constants given in Table 1.6, the molar volumes of (b) ethane, C2H6 is to be calculated at 25 °C and 1 bar pressure.
Concept introduction:
The ideal
Answer to Problem 1.79E
The molar volumes of ethane, C2H6 is calculated at 25 °C and 1 bar pressure as follows;
Van der Waals constant for ethane a = 5.489 atm L2/mol2;
b = 0.0638 L/mol
Boyle temperature Tb = a/bR = 1049.5 K
Molar volume for ethane ῡ = RT/p = 87.2 L
Explanation of Solution
The non-ideal gas equation represented as;
In the above equation,
[p + an2/V2] Correction term introduced for molecular attraction
[V – nb] Correction term introduced for volume of molecules
‘a’ and ‘b’ are called as van der Waals constants
a = the pressure correction and it is related to the magnitude and strength of the interactions between gas particles.
b = the volume correction and it is having relationship to the size of the gas particles.
Given;
Van der Waals constant for ethane a = 5.489 atm L2/mol2
b = 0.0638 L/mol
Boyle temperature Tb = a/bR
At Boyle temperature, the second virial coefficient B is zero. Thus, for one mole of ethane the molar volume is, at one bar pressure
ῡ = RT/p
Using the van der Waals constants given in Table 1.6, the molar volumes of ethane, C2H6 is calculated at 25 °C and 1 bar pressure.
(c)
Interpretation:
Using the van der Waals constants given in Table 1.6, the molar volumes of mercury Hg is to be calculated at 25 °C and 1 bar pressure.
Concept introduction:
The ideal gas law considered the molecules of a gas as point particles with perfectly elastic collisions among them in nature. This works importantly well for gases at dilution and at low pressure in many experimental calculations. But the gas molecules are not performing as point masses, and there are situations where the properties of the gas molecules have measurable effect by experiments. Thus, a modification of the ideal gas equation was coined by Johannes D. van der Waals in 1873 to consider size of molecules and the interaction forces among them. It is generally denoted as the van der Waals equation of state.
Answer to Problem 1.79E
The molar volumes of mercury is calculated at 25 °C and 1 bar pressure as follows;
Van der Waals constant for mercury a = 8.093atm L2/mol2;
b = 0.01696 L/mol
Boyle temperature Tb = a/bR = 5822 K
Molar volume for mercury ῡ = RT/p = 484 L
Explanation of Solution
The non-ideal gas equation represented as;
In the above equation,
[p + an2/V2] Correction term introduced for molecular attraction
[V – nb] Correction term introduced for volume of molecules
‘a’ and ‘b’ are called as van der Waals constants
a = the pressure correction and it is related to the magnitude and strength of the interactions between gas particles.
b = the volume correction and it is having relationship to the size of the gas particles.
Given;
Van der Waals constant for mercury a = 8.093atm L2/mol2;
b = 0.01696 L/mol
Boyle temperature Tb = a/bR
= (8.093 atm L2 mol-2)/(0.01696 L mol-1 x 0.08205 L. atm K-1 mol-1
= 5822 K
At Boyle temperature, the second virial coefficient B is zero. Thus, for one mole of mercury the molar volume is, at one bar pressure
ῡ = RT/p
Using the van der Waals constants given in Table 1.6, the molar volumes of mercury Hg is calculated at 25 °C and 1 bar pressure.
Want to see more full solutions like this?
Chapter 1 Solutions
Physical Chemistry
- NH2 1. CH3–MgCl 2. H3O+ ? As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C - C bond as its major product: If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new C - C bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new C - C bond. Х ☐: Carrow_forwardPredict the major products of this organic reaction. If there will be no major products, check the box under the drawing area instead. No reaction. : + Х è OH K Cr O 2 27 2 4' 2 Click and drag to start drawing a structure.arrow_forwardLaminar compounds are characterized by havinga) a high value of the internal surface of the solid.b) a high adsorption potential.arrow_forward
- Intercalation compounds have their sheetsa) negatively charged.b) positively charged.arrow_forwardIndicate whether the following two statements are correct or not:- Polythiazine, formed by N and S, does not conduct electricity- Carbon can have a specific surface area of 3000 m2/garrow_forwardIndicate whether the following two statements are correct or not:- The S8 heterocycle is the origin of a family of compounds- Most of the elements that give rise to stable heterocycles belong to group d.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,