
(a)
Interpretation:
The
Concept introduction:
The ideal gas law or general gas equation is the equation of state of a hypothetical ideal gas. Thought it has some limitations, it is a good approximation of the behavior of several gases under several conditions. The term was first coined by Emile Clapeyron in the year of 1834 as combination of other laws. The ideal gas law can be written as PV = nRT.

Answer to Problem 1.32E
Volume as a function of pressure can be stated as,
V = F(P) = nRT/P
Volume s a function of pressure can be stated as,
V = F(T) = nRT/P
Explanation of Solution
The various properties of gases which can be observed with our oral senses, include pressure, temperature, mass and the volume which contains the gas. The careful examination determined that these variables are related to one another and the state of the gas can be determined by the changes of these properties. Boyle’s law is an experimental
The ideal gas equation is PV = nRT……………………………….(1)
Where,
P = Pressure of gas
V = Volume of gas
n = No of moles of gas
R = Gas constant and T = Temperature of gas
The gas constant or ideal gas constant (R) is equivalent to the Boltzmann constant and expressed as energy per temperature increment per mole units (R = 0.083 L. bar / K mol).
From the above expression we can know that gas constant ‘R’ is a constant, whose value will not change with respect to any other values but not a variable. The terms pressure, volume and temperature are variables and their values will change with respect to other. They can be expressed with respect to other variables. The slope of a line can be defined as the plane containing the x and y axes and represented by the letter ‘m’. In other words, the change in the y-axis divided by the corresponding change in the x-axis, between two well-defined points on the line. This can be described by the following equation;
The ideal gas equation (1) can be written as,
(a) Volume as a function of pressure can be stated as,
V = F(P) = nRT/P
Volume s a function of pressure can be stated as,
V = F(T) = nRT/P
Thus, the ideal gas law as volume being a function of pressure and temperature is rewritten.
(b)
Interpretation:
The expression for the total derivative dV as a function of pressure and temperature is to be stated.
Concept introduction:
The ideal gas law or general gas equation is the equation of state of a hypothetical ideal gas. Thought it has some limitations, it is a good approximation of the behavior of several gases under several conditions. The term was first coined by Emile Clapeyron in the year of 1834 as combination of other laws. The ideal gas law can be written as PV = nRT.

Answer to Problem 1.32E
The expression for the total derivative dV as a function of pressure and temperature is as follows;
total derivative dV as a function of pressure
total derivative dV as a function of temperature
Explanation of Solution
The various properties of gases which can be observed with our oral senses, include pressure, temperature, mass and the volume which contains the gas. The careful examination determined that these variables are related to one another and the state of the gas can be determined by the changes of these properties. Boyle’s law is an experimental gas law which describes how the pressure of a gas tends to increase as the volume of the container decreases. Similarly, Charles’s law or law of volumes is an experimental gas law which denotes the expansion of gas when heated.
The ideal gas equation is PV = nRT……………………………….(1)
Where,
P = Pressure of gas
V = Volume of gas
n = No of moles of gas
R = Gas constant and T = Temperature of gas
The gas constant or ideal gas constant (R) is equivalent to the Boltzmann constant and expressed as energy per temperature increment per mole units (R = 0.083 L. bar / K mol).
From the above expression we can know that gas constant ‘R’ is a constant, whose value will not change with respect to any other values but not a variable. The terms pressure, volume and temperature are variables and their values will change with respect to other. They can be expressed with respect to other variables. The slope of a line can be defined as the plane containing the x and y axes and represented by the letter ‘m’. In other words, the change in the y-axis divided by the corresponding change in the x-axis, between two well-defined points on the line. This can be described by the following equation;
The ideal gas equation (1) can be written as, dV as a function of pressure
Similarly, dV as a function of temperature,
The expression for the total derivative dV as a function of pressure and temperature is stated.
(c)
Interpretation:
At a pressure of 1.08 atm and 350 K for one more of ideal gas, the predicted change in volume if the pressure changes by 0.10 atm (that is, dp = 0.10 atm) and the temperature change is 10.0 K is to be calculated.
Concept introduction:
The ideal gas law or general gas equation is the equation of state of a hypothetical ideal gas. Thought it has some limitations, it is a good approximation of the behavior of several gases under several conditions. The term was first coined by Emile Clapeyron in the year of 1834 as combination of other laws. The ideal gas law can be written as PV = nRT.

Answer to Problem 1.32E
The predicted change in volume if the pressure changes by 0.10 atm (dV) = -24.62 liter and the predicted change in volume if the temperature changes by 10.0 K (dV) = 0.76 liter.
Explanation of Solution
We know that; dV as a function of pressure
Given;
n = 1 mol ; R = 0.0823 L. atm / K mol
T = 350 K ; P = 1.08 atm
dp = 0.10 atm
substituting the values in equation (2), we get
Similarly, we know that dV as a function of temperature
Given;
n = 1 mol; R = 0.0823 L. atm / K mol
T = 350 K ; P = 1.08 atm
dT = 10 K
substituting the values in equation (3), we get
Thus, the predicted change in volume if the pressure changes by 0.10 atm (dV) = -24.62 liter and the predicted change in volume if the temperature changes by 10.0 K (dV) = 0.76 liter is
calculated.
Want to see more full solutions like this?
Chapter 1 Solutions
Physical Chemistry
- Show the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forwardSoap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forward
- The two pKa values of oxalic acid are 1.25 and 3.81. Why are they not the same value? Show the protontransfer as part of your explanation. *see imagearrow_forwardасть Identify all the bonds that gauche interact with C-OMe in the most stable conformation of the above compound.arrow_forwardPredict the reactants used in the formation of the following compounds using Acid-Catalyzed dehydration reactionarrow_forward
- Can I please get help with this?arrow_forward.. Give the major organic product(s) for each of the following reactions or sequences of reactions. Show ll relevant stereochemistry [3 ONLY]. A H Br 1. NaCN 2 NaOH, H₂O, heat 3. H3O+ B. CH₂COOH 19000 1. LiAlH4 THF, heat 2 H₂O* C. CH Br 1. NaCN, acetone 2 H3O+, heat D. Br 1. Mg. ether 3. H₂O+ 2 CO₂ E. CN 1. (CH) CHMgBr, ether 2 H₂O+arrow_forwardAssign this COSY spectrumarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning




