(a)
Interpretation:
The
Concept introduction:
The ideal gas law or general gas equation is the equation of state of a hypothetical ideal gas. Thought it has some limitations, it is a good approximation of the behavior of several gases under several conditions. The term was first coined by Emile Clapeyron in the year of 1834 as combination of other laws. The ideal gas law can be written as PV = nRT.
Answer to Problem 1.32E
Volume as a function of pressure can be stated as,
V = F(P) = nRT/P
Volume s a function of pressure can be stated as,
V = F(T) = nRT/P
Explanation of Solution
The various properties of gases which can be observed with our oral senses, include pressure, temperature, mass and the volume which contains the gas. The careful examination determined that these variables are related to one another and the state of the gas can be determined by the changes of these properties. Boyle’s law is an experimental
The ideal gas equation is PV = nRT……………………………….(1)
Where,
P = Pressure of gas
V = Volume of gas
n = No of moles of gas
R = Gas constant and T = Temperature of gas
The gas constant or ideal gas constant (R) is equivalent to the Boltzmann constant and expressed as energy per temperature increment per mole units (R = 0.083 L. bar / K mol).
From the above expression we can know that gas constant ‘R’ is a constant, whose value will not change with respect to any other values but not a variable. The terms pressure, volume and temperature are variables and their values will change with respect to other. They can be expressed with respect to other variables. The slope of a line can be defined as the plane containing the x and y axes and represented by the letter ‘m’. In other words, the change in the y-axis divided by the corresponding change in the x-axis, between two well-defined points on the line. This can be described by the following equation;
The ideal gas equation (1) can be written as,
(a) Volume as a function of pressure can be stated as,
V = F(P) = nRT/P
Volume s a function of pressure can be stated as,
V = F(T) = nRT/P
Thus, the ideal gas law as volume being a function of pressure and temperature is rewritten.
(b)
Interpretation:
The expression for the total derivative dV as a function of pressure and temperature is to be stated.
Concept introduction:
The ideal gas law or general gas equation is the equation of state of a hypothetical ideal gas. Thought it has some limitations, it is a good approximation of the behavior of several gases under several conditions. The term was first coined by Emile Clapeyron in the year of 1834 as combination of other laws. The ideal gas law can be written as PV = nRT.
Answer to Problem 1.32E
The expression for the total derivative dV as a function of pressure and temperature is as follows;
total derivative dV as a function of pressure
total derivative dV as a function of temperature
Explanation of Solution
The various properties of gases which can be observed with our oral senses, include pressure, temperature, mass and the volume which contains the gas. The careful examination determined that these variables are related to one another and the state of the gas can be determined by the changes of these properties. Boyle’s law is an experimental gas law which describes how the pressure of a gas tends to increase as the volume of the container decreases. Similarly, Charles’s law or law of volumes is an experimental gas law which denotes the expansion of gas when heated.
The ideal gas equation is PV = nRT……………………………….(1)
Where,
P = Pressure of gas
V = Volume of gas
n = No of moles of gas
R = Gas constant and T = Temperature of gas
The gas constant or ideal gas constant (R) is equivalent to the Boltzmann constant and expressed as energy per temperature increment per mole units (R = 0.083 L. bar / K mol).
From the above expression we can know that gas constant ‘R’ is a constant, whose value will not change with respect to any other values but not a variable. The terms pressure, volume and temperature are variables and their values will change with respect to other. They can be expressed with respect to other variables. The slope of a line can be defined as the plane containing the x and y axes and represented by the letter ‘m’. In other words, the change in the y-axis divided by the corresponding change in the x-axis, between two well-defined points on the line. This can be described by the following equation;
The ideal gas equation (1) can be written as, dV as a function of pressure
Similarly, dV as a function of temperature,
The expression for the total derivative dV as a function of pressure and temperature is stated.
(c)
Interpretation:
At a pressure of 1.08 atm and 350 K for one more of ideal gas, the predicted change in volume if the pressure changes by 0.10 atm (that is, dp = 0.10 atm) and the temperature change is 10.0 K is to be calculated.
Concept introduction:
The ideal gas law or general gas equation is the equation of state of a hypothetical ideal gas. Thought it has some limitations, it is a good approximation of the behavior of several gases under several conditions. The term was first coined by Emile Clapeyron in the year of 1834 as combination of other laws. The ideal gas law can be written as PV = nRT.
Answer to Problem 1.32E
The predicted change in volume if the pressure changes by 0.10 atm (dV) = -24.62 liter and the predicted change in volume if the temperature changes by 10.0 K (dV) = 0.76 liter.
Explanation of Solution
We know that; dV as a function of pressure
Given;
n = 1 mol ; R = 0.0823 L. atm / K mol
T = 350 K ; P = 1.08 atm
dp = 0.10 atm
substituting the values in equation (2), we get
Similarly, we know that dV as a function of temperature
Given;
n = 1 mol; R = 0.0823 L. atm / K mol
T = 350 K ; P = 1.08 atm
dT = 10 K
substituting the values in equation (3), we get
Thus, the predicted change in volume if the pressure changes by 0.10 atm (dV) = -24.62 liter and the predicted change in volume if the temperature changes by 10.0 K (dV) = 0.76 liter is
calculated.
Want to see more full solutions like this?
Chapter 1 Solutions
Physical Chemistry
- (a) The following synthesis of the molecule shown in the circle has a major problem. What is this problem? (2 pts) 1) HBr (no peroxides) 2) H- NaNH2 Br 3) NaNH, 4) CH3Br 5) H2, Pd (b) Starting with the molecule shown below and any other materials with two carbons or less, write out an alternate synthesis of the circled molecule. More than one step is needed. Indicate the reagent(s) and the major product in all the steps in your synthesis. (5 pts) 2024 Fall Term (1) Organic Chemistry 1 (Lec) CHEM 22204 02[6386] (Hunter College) (c) Using the same starting material as in part (b) and any other materials win two carpons or less, write out syntheses of the circled molecules shown below. More than one step is needed in each case. Indicate the reagent(s) and the major product in all the steps in your synthesis. You may use reactions and products from your synthesis in part (b). (5 pts)arrow_forwardalt ons for Free Response Questions FRQ 1: 0/5 To spectrophotometrically determine the mass percent of cobalt in an ore containing cobalt and some inert materials, solutions with known [Co?) are prepared and absorbance of each of the solutions is measured at the wavelength of optimum absorbance. The data are used to create a calibration plot, shown below. 0.90- 0.80- 0.70 0.60 0.50 0.40- 0.30 0.20- 0.10- 0.00- 0.005 0.010 Concentration (M) 0.015 A 0.630 g sample of the ore is completely dissolved in concentrated HNO3(aq). The mixture is diluted with water to a final volume of 50.00 ml. Assume that all the cobalt in the ore sample is converted to Co2+(aq). a. What is the [Co2] in the solution if the absorbance of a sample of the solution is 0.74? 13 ✗ b. Calculate the number of moles of Co2+(aq) in the 50.00 mL solution. 0.008 mols Coarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning