
Numerically evaluate for one mole of methane acting as a van der Waals gas at (a) T = 298 K and V = 25.0 L and (b) T = 1000 K and V = 250.0 L. Comment on which set of conditions yields a number closer to that predicted by the

(a)
Interpretation:
Concept introduction:
The ideal gas law considered the molecules of a gas as point particles with perfectly elastic collisions among them in nature. Thus, a modification of the ideal gas equation was coined by Johannes D. van der Waals in 1873 to consider size of molecules and the interaction forces among them. It is generally denoted as the van der Waals equation of state.
Answer to Problem 1.51E
Explanation of Solution
The ideal gas equation can be represented as;
PV = nRT …(1)
Notably, the van Waals equation improves the ideal gas law by adding two significant terms in the ideal gas equation: one term is to account for the volume of the gas molecules and another term is introduced for the attractive forces between them. The non-ideal gas equation represented as;
In the above equation,
‘a’ and ‘b’ are called as van der Waals constants
Rearranging equation (2) we get pressure p of real gas as,
On differentiation with respect to volume V, at constant T, n we get
Given for methane,
Number of moles = n = 1 mole
Temperature of gas = T = 298 K
Volume of gas = V = 25.0 L
Value of constant ‘a’ for methane = 2.253atmL2/mol2
Value of constant ‘b’ for methane = 0.0428 L/mol
Substituting the values in equation (4), we get,
Besides, differentiating the equation (1) for ideal gas with respect to volume V, we get
Substituting the given parameters for methane in equation (5), we get for ideal gas
25.0 L is calculated as -0.0395 atm/L

(b)
Interpretation:
T = 1000 K and V = 250.0 L.
Concept introduction:
The ideal gas law considered the molecules of a gas as point particles with perfectly elastic collisions among them in nature. Thus, a modification of the ideal gas equation was coined by Johannes D. van der Waals in 1873 to consider size of molecules and the interaction forces among them. It is generally denoted as the van der Waals equation of state.
Answer to Problem 1.51E
250.0 L is calculated as -0.0013 atm/L
Explanation of Solution
The ideal gas equation can be represented as;
PV = nRT … (1)
The non-ideal gas equation represented as;
In the above equation,
‘a’ and ‘b’ are called as van der Waals constants.
Rearranging equation (2) we get pressure P of real gas as,
On differentiation with respect to volume V, at constant T, n we get
Given for methane,
Number of moles = n = 1 mole
Temperature of gas = T = 1000 K
Volume of gas = V = 250.0 L
Value of constant ‘a’ for methane = 2.253atmL2/mol2
Value of constant ‘b’ for methane = 0.0428 L/mol
Substituting the values in equation (4), we get,
Besides, differentiating the equation (1) for ideal gas with respect to volume V, we get
Substituting the given parameters for methane in equation (5), we get for ideal gas,
Non-ideal gas value is in close proximity to ideal gas values.
Want to see more full solutions like this?
Chapter 1 Solutions
Physical Chemistry
- Please help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!arrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br "CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forwardExperiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,

