Concept explainers
(a)
Interpretation:
Laser that can be used has to be determined among a high-intensity red ruby laser and a low-intensity violet GaN laser.
Concept Introduction:
Wavelength and frequency are inversely proportional to each other and the relationship between wavelength and frequency can be given as,
Here,
Planck’s equation,
Here,
(a)

Explanation of Solution
- Calculate the energy of light from a high-intensity red ruby laser:
The
The frequency of light is
The energy per photon of light is calculated,
Substituting the values to the above equation,
The energy per photon is
- Calculate the energy of light from a low-intensity violet GaN laser:
Wavelength of light from a low-intensity violet GaN laser is
The frequency of light from a low-intensity violet GaN laser is calculated by using the equation,
The frequency of light is
The energy per photon of light is calculated,
Substituting the values to the above equation,
The energy per photon is
Comparing the values it is clear that the energy of light from a low-intensity violet GaN laser is higher than that of a high-intensity red ruby laser. Hence, a low-intensity violet GaN laser is used since it will give enough energy for ejecting an electron.
(b)
Interpretation:
Kinetic energy of the electrons emitted has to be calculated.
Concept Introduction:
Kinetic energy of one ejected electron can be calculated using the given formula,
Here,
(b)

Answer to Problem 1.31E
Kinetic energy of the electrons emitted is
Explanation of Solution
Given information is shown below,
Here, a low-intensity violet GaN laser is used
The frequency of light from a low-intensity violet GaN laser is calculated by using the equation,
The energy per photon of light is calculated,
The kinetic energy of the electrons emitted can be calculated as follows,
Therefore, kinetic energy of the electrons emitted is
Want to see more full solutions like this?
Chapter 1 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM
- Identify and provide a concise explanation of a specific analytical instrument capable of detecting and quantifying trace compounds in food samples. Emphasise the instrumental capabilities relevant to trace compound analysis in the nominated food. Include the specific application name (eg: identification and quantification of mercury in salmon), outline a brief description of sample preparation procedures, and provide a summary of the obtained results from the analytical process.arrow_forwardIdentify and provide an explanation of what 'Seperation Science' is. Also describe its importance with the respect to the chemical analysis of food. Provide specific examples.arrow_forward5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn. H3C CH3arrow_forward
- State the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardState the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.arrow_forwardProvide the semi-developed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forward
- Given a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forwardAn orange laser has a wavelength of 610 nm. What is the energy of this light?arrow_forwardThe molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues: Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550. Predict the molar absorptivity of transferrin. Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet. Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.arrow_forward
- In GC, what order will the following molecules elute from the column? CH3OCH3, CH3CH2OH, C3H8, C4H10arrow_forwardBeer’s Law is A = εbc, where A is absorbance, ε is the molar absorptivity (which is specific to the compound and wavelength in the measurement), and c is concentration. The absorbance of a 2.31 × 10-5 M solution of a compound is 0.822 at a wavelength of 266 nm in a 1.00-cm cell. Calculate the molar absorptivity at 266 nm.arrow_forwardHow to calculate % of unknown solution using line of best fit y=0.1227x + 0.0292 (y=2.244)arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning



