Concept explainers
(a)
Interpretation:
The ground state configuration of silver atom has to be predicted.
Concept introduction:
Electronic configuration: The electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals.
Electrons occupy the lowest energy orbitals. The increasing order of orbital energy is
The energy order of the orbital for the first three periods is as follows,
The orbital which is closer to the nucleus has lower energy; therefore the
In general, the orbitals can hold maximum of two electrons, the two electrons must have opposite spin.
The subshell ordering by Aufbau principle is given below,
(a)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The silver atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of silver atom is
Silver belongs to Period
The electronic configuration also can be written as follows,
(b)
Interpretation:
The ground state configuration of beryllium atom has to be predicted.
Concept introduction:
Refer to part (a).
(b)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The beryllium atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of beryllium atom is
Beryllium belongs to Period
The electronic configuration also can be written as follows,
(c)
Interpretation:
The ground state configuration of antimony atom has to be predicted.
Concept introduction:
Refer to part (a).
(c)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The antimony atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of antimony atom is
The electronic configuration also can be written as follows,
(d)
Interpretation:
The ground state configuration of gallium atom has to be predicted.
Concept introduction:
Refer to part (a).
(d)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The gallium atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of gallium atom is
Gallium belongs to Period
The electronic configuration also can be written as follows,
(e)
Interpretation:
The ground state configuration of tungsten atom has to be predicted.
Concept introduction:
Refer to part (a).
(e)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The tungsten atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of tungsten atom is
Tungsten belongs to Period
The electronic configuration also can be written as follows,
(f)
Interpretation:
The ground state configuration of iodine atom has to be predicted.
Concept introduction:
Refer to part (a).
(f)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The iodine atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of iodine atom is
Rubidium belongs to Period
The electronic configuration also can be written as follows,
Want to see more full solutions like this?
Chapter 1 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM
- Please help me Please use https://app.molview.com/ to draw this. I tried, but I couldn't figure out how to do it.arrow_forwardPropose a synthesis of 1-butanamine from the following: (a) a chloroalkane of three carbons (b) a chloroalkane of four carbonsarrow_forwardSelect the stronger base from each pair of compounds. (a) H₂CNH₂ or EtzN (b) CI or NH2 NH2 (c) .Q or EtzN (d) or (e) N or (f) H or Harrow_forward
- 4. Provide a clear arrow-pushing mechanism for each of the following reactions. Do not skip proton transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted without ambiguity. a. 2. 1. LDA 3. H3O+ HOarrow_forwardb. H3C CH3 H3O+ ✓ H OHarrow_forward2. Provide reagents/conditions to accomplish the following syntheses. More than one step is required in some cases. a. CH3arrow_forward
- Identify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forwardIdentify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forwardInstructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning



