Write down the equations and the associated boundary conditions for solving particle in a 1-D box of dimension L with a finite potential well, i.e., the potential energy U is zero inside the box, but finite outside the box. Specifically, U = U, for x < 0, U = 0 for 0 ≤ x ≤ L, and U = U, for x > L. Assuming that particle's energy E is less than U, what form do the solutions take? Without solving the problem (feel free to give it a try though), qualitatively compare with the case with infinitely hard walls by sketching the differences in wave functions and probability densities and describing the changes in particle momenta and energy levels (e.g., increasing or decreasing and why), for a given quantum number.
Write down the equations and the associated boundary conditions for solving particle in a 1-D box of dimension L with a finite potential well, i.e., the potential energy U is zero inside the box, but finite outside the box. Specifically, U = U, for x < 0, U = 0 for 0 ≤ x ≤ L, and U = U, for x > L. Assuming that particle's energy E is less than U, what form do the solutions take? Without solving the problem (feel free to give it a try though), qualitatively compare with the case with infinitely hard walls by sketching the differences in wave functions and probability densities and describing the changes in particle momenta and energy levels (e.g., increasing or decreasing and why), for a given quantum number.
Related questions
Question
100%

Transcribed Image Text:Write down the equations and the associated boundary conditions for
solving particle in a 1-D box of dimension L with a finite potential
well, i.e., the potential energy U is zero inside the box, but finite
outside the box. Specifically, U = U₁ for x < 0, U = 0 for 0≤ x ≤
L, and U = U, for x > L. Assuming that particle's energy E is less
than U, what form do the solutions take? Without solving the
problem (feel free to give it a try though), qualitatively compare with
the case with infinitely hard walls by sketching the differences in
wave functions and probability densities and describing the changes
in particle momenta and energy levels (e.g., increasing or decreasing
and why), for a given quantum number.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
