frequently interesting to know how a system behaves under some disturbance. These disturbances are typically encoded as operators. f, (æ)Orb(x)dx may be interpreted as the probability of finding the system (x) in the eigenfunction , (x) after being acted on by the disturbance O. Begin with the system in state n =1 and compute the probability that the system is found in some state n + 1 under the action of the operator Qa, where Q is just a constant. In the case of atomic systems, such operators are known as dipole operators and transitions induced by them are called dipole induced transitions. Repeat this problem with the operator e-/L instead.

icon
Related questions
Question
Consider a particle in a box of length L with one end coinciding with the origin. It is
frequently interesting to know how a system behaves under some disturbance. These
disturbances are typically encoded as operators. fd, (æ)Op(x)dx may be interpreted
as the probability of finding the system (x) in the eigenfunction , (x) after being acted
on by the disturbance Ö.
Begin with the system in state n = 1 and compute the probability that the system is found
in some state n 1 under the action of the operator Qx, where Q is just a constant. In
the case of atomic systems, such operators are known as dipole operators and transitions
induced by them are called dipole induced transitions. Repeat this problem with the
operator e"/L instead.
Transcribed Image Text:Consider a particle in a box of length L with one end coinciding with the origin. It is frequently interesting to know how a system behaves under some disturbance. These disturbances are typically encoded as operators. fd, (æ)Op(x)dx may be interpreted as the probability of finding the system (x) in the eigenfunction , (x) after being acted on by the disturbance Ö. Begin with the system in state n = 1 and compute the probability that the system is found in some state n 1 under the action of the operator Qx, where Q is just a constant. In the case of atomic systems, such operators are known as dipole operators and transitions induced by them are called dipole induced transitions. Repeat this problem with the operator e"/L instead.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions