In terms of the î and p operators, calculate the following commutation relations. You can assume h(x) is a fine test function to help facilitate the calculations. Do not include h(x) as part of your answer. (a) Calculate [£2,p]. (b) Calculate [î, p²].
Q: QUESTION 3: Abstract angular momentum operators: In this problem you may assume t commutation…
A:
Q: Exercies: 1) Express the polynomial xr + 2x2 - 5x + 2 in a series of Laguerre polynomials. 2) Prove…
A: This problem can be solved using the recurrence formula for Laguerre polynomials.
Q: Answer the following about an observable that is represented by the operator  = wo (3² + 3²). ħ (4)…
A: The question is asking whether it is possible to find a set of basis states that are simultaneously…
Q: The angular momentum operator is given by Î = î x p. (a) Assuming we are in cartesian space, prove…
A:
Q: (d) A linear perturbation H' = nx is applied to the system. What are the first order energy…
A: d) Given, linear perturbation is, H^'=ηx So the first order energy correction for energy eigen…
Q: The eigenstates of the 1² and 1₂ operators can be written in Dirac notation as Ij m) where L²|j m) =…
A: Using property of angular momentum operator we can solve the problem as solved below
Q: Is the following total differential exact? df(g,h) = 7g(g^3+ h^2)jdg + 2h^4(3g^2 + 7h^2)jdh. Could…
A:
Q: where and k²-k² = 2m2² (V₂-E) k² = 2 m E I ħ² Show that the solutions for region II can also be…
A:
Q: 5. Show that for all states of a particle in a box. Is this result physically reasonable?…
A: We have a particle in a 1-dimensional box of side say 'a' then we need to prove that the expectation…
Q: (4a³ 1/4 T xe-ax²/2, where a = μω ħ The harmonic oscillator eigenfunction ₁(x) = (a) Find (x²) for…
A: Harmonic oscillator eigenfunction Ψ1(x)=(4α3π)1/4 x e-αx2/2 α=μωħ
Q: Find the following commutators by applying the operators to an arbitrary function f(x) [e, x+d²/dx²]…
A: Given Data:The first commutator is [ex,x+d2dx2]And the second commutator is [x3−ddx,x+d2dx2]The…
Q: Answer the following about an observable that is represented by the operator  = wo (3² + 3²). ħ (4)…
A: The question is asking whether it is possible to write a complete set of basis states that are…
Q: In considering two operators that correspond to physical observables, if the operators commute, then…
A: If two operators A and B commute, that is, [A,B]=AB-BA=0, then they share a complete set of…
Q: The kinetic energy operator for an electron is p²/2m. Use eqn 1.41 to show that this can be…
A: Let p denotes the momentum operator, me denotes the electron mass, σ denotes the operator, and K…
Q: Use the facts that det(E3E2E1E0A) = 1 and Eo is a scale matrix (-949,: → A9,:) E₁ is a swap matrix…
A:
Q: What are the normalized eigenfunctions of the operator Px = -ih? Under what conditions are these…
A:
Q: please provide detailed solution for a to c, thank you
A: thank you
Q: making use of that 1² = Î? + ½ (εÎ_ + Î_Î4) prove that + (T|Z²|a) = -ħ² What are the eigenfunctions…
A: Given the total momentum operatorUsing the relationWe need to prove
Q: Suppose that you have the Lagrangian L = (;2 + 0ʻr²) + 420 for a 2D 20 system in plane polar…
A: Conjugate momenta Pq corresponding to conjugate variable q is given by Where L = Lagrangian of the…
Q: Suppose I have an operator Â, and I discover that Â(2²) = 5 sina and Â(sin x) = 5x². (a) Find Â(2²…
A: A^(x2)=5 sin xA^(sin x)=5 x2
Q: What is the value of the commutator [Sy , ž]? Here Jy is the y-component of the angular momentum…
A: using different properties of commutator we can solve the question
Q: b) Prove that the following operators are Hermitian 1) Z 2) Lx
A: (1) Z is z component of position operator. Since position operator r = (X, Y, Z) is hermitian.…
Q: If three operators A, B and C are such that [A, B] = 0, [A,C] = 0,, [B,C] #0 Show that [‚, [B,Ĉ] ]…
A:
Q: Integration over these velocity space variables would then take the form de [d³on(r, v.1)= [ do v²…
A: Given : integration in terms of velocity variables , And our task to write the given integration in…
Q: Example of numerical instability: Take y′ = −5y, y(0) = 1. We know that the solution should decay to…
A: Given:- dydx= -5ys0 = 1 By Euler's formula: s1 = y0 +h +x0,s0Where, fx,y = dydx=…
Q: e normalization
A:
Q: please answer c) only 2. a) A spinless particle, mass m, is confined to a two-dimensional box of…
A: From the given density of states the particle function of the system: ZN = ∫0∞gkexp-βEdk The average…
Use the commutation formula of [x,p] and related properties,
Step by step
Solved in 2 steps with 1 images
- Consider the following operators on a Hilbert space V³ (C): 0-i 0 ABAR-G , Ly i 0-i , Liz 00 √2 0 i 0 LE √2 010 101 010 What are the corresponding eigenstates of L₂? 10 00 0 0 -1 What are the normalized eigenstates and eigenvalues of L₂ in the L₂ basis?(AA) ²( ▲ B) ²≥ ½ (i[ÂÂ])² If [ÂÂ]=iñ, and  and represent Hermitian operators corresponding to observable properties, what is the minimum value that AA AB can have? Report your answer as a decimal number with three significant figures.The Hamiltonian of an electron of mass m in a constant electric field E in one dimension can be written as Ĥ=+eEx where â and are the position and momentum operators, respectively. With initials conditions (t = 0) = 0 and p(t = 0) = 0, which one of the following gives (t) at time in the Heisenberg picture? You may use the commutator [â,p] = iħ. O a. O b. eEt2 2m O C. e Et O d. -eEt O e. eEt² m pt m
- Please obtain the same result as in the book.Consider the half oscillator" in which a particle of mass m is restricted to the region x > 0 by the potential energy U(x) = 00 for a O where k is the spring constant. What are the energies of the ground state and fırst excited state? Explain your reasoning. Give the energies in terms of the oscillator frequency wo = Vk/m. Formulas.pdf (Click here-->)O Consider the kinetic energy matrix elements between Hydrogen states (n' = 4, l', m'| |P|²| m -|n = 3, l, m), = for all the allowed l', m', l, m values. What kind of operator is the the kinetic energy (scalar or vector)? Use this to determine the following. For what choices of the four quantum numbers (l', m', l, m) can the matrix elements be nonzero (e.g. (l', m', l, m) (0, 0, 0, 0),...)? Which of these nonzero values can be related to each other (i.e. if you knew one of them, you could predict the other)? In this sense, how many independent nonzero matrix elements are there? (Note: there is no need to calculate any of these matrix elements.)
- Bit confused you say with is the definition of a complex conjugate but all I've ever seen is |X|^2=(X*)(X). Can you provide maybe a reference or proof of this?Consider the matrix representation of Lx, Ly and L₂ for the case l = 1 (see Matrix Representation of Operators class notes pp. 11-12). (a) Construct the matrix representation of L² for l = 1. (b) What are the eigenvalues and corresponding eigenvectors of L²? (c) Are the eigenvectors of L² the same as those of L₂? Explain. (d) Compute L² |x; +1), where |x;+1) is the eigenvector of La corresponding to eigenvalue +ħ.Consider the following operator imp Â= and the following functions that are both eigenfunctions of this operator. mm (0) = e² ‚ (ø) = (a) Show that a linear combination of these functions d² dø² is also an eigenfunction of the operator. (b) What is the eigenvalue? -m imp c₁e¹m + c₂e² -imp -imp = e