Consider the following operators on a Hilbert space V³(C) : [ 0-i 0 -i 1. i LT √2 010 101 010 i 0 What are the corresponding eigenstates of L₂? , Liz 8] 100 000 00-1
Consider the following operators on a Hilbert space V³(C) : [ 0-i 0 -i 1. i LT √2 010 101 010 i 0 What are the corresponding eigenstates of L₂? , Liz 8] 100 000 00-1
Related questions
Question
![Consider the following operators on a Hilbert space \( \mathbb{V}^3(\mathbb{C}) \):
\[
L_x = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad L_y = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{bmatrix}, \quad L_z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}.
\]
**Questions:**
1. What are the corresponding eigenstates of \( L_z \)?
2. What are the normalized eigenstates and eigenvalues of \( L_x \) in the \( L_z \) basis?
**Explanation of Diagrams:**
There are no diagrams or graphs present in the image. The image contains mathematical matrices which define operators \( L_x \), \( L_y \), and \( L_z \) used in quantum mechanics to represent observable quantities in a Hilbert space.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdaad9e7e-1f14-44d5-98ac-51623b651f9b%2Fd860f9ea-ff48-4108-9071-9ad1289a1adb%2Fe7oytjr_processed.png&w=3840&q=75)
Transcribed Image Text:Consider the following operators on a Hilbert space \( \mathbb{V}^3(\mathbb{C}) \):
\[
L_x = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad L_y = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{bmatrix}, \quad L_z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}.
\]
**Questions:**
1. What are the corresponding eigenstates of \( L_z \)?
2. What are the normalized eigenstates and eigenvalues of \( L_x \) in the \( L_z \) basis?
**Explanation of Diagrams:**
There are no diagrams or graphs present in the image. The image contains mathematical matrices which define operators \( L_x \), \( L_y \), and \( L_z \) used in quantum mechanics to represent observable quantities in a Hilbert space.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Required to find the eigenstates of L_z
Required to find the eigenstates of L_z
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)