Consider an infinite well, width L from x=-L/2 to x=+L/2. Now consider a trial wave-function for this potential, V(x) = 0 inside the well and infinite outside, that is of the form (z) = Ar. Normalize this wave-function. Find < >, < x² and .
Consider an infinite well, width L from x=-L/2 to x=+L/2. Now consider a trial wave-function for this potential, V(x) = 0 inside the well and infinite outside, that is of the form (z) = Ar. Normalize this wave-function. Find < >, < x² and .
Related questions
Question
![Consider an infinite well, width L from x=-L/2 to x=+L/2. Now
consider a trial wave-function for this potential, V(x) = 0 inside the well
and infinite outside, that is of the form (z) = Az. Normalize this
wave-function. Find < a>, <z² and <p>.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdaad9e7e-1f14-44d5-98ac-51623b651f9b%2F99c72574-4882-4e0b-a654-ddee057b7ce3%2F43jo19e_processed.png&w=3840&q=75)
Transcribed Image Text:Consider an infinite well, width L from x=-L/2 to x=+L/2. Now
consider a trial wave-function for this potential, V(x) = 0 inside the well
and infinite outside, that is of the form (z) = Az. Normalize this
wave-function. Find < a>, <z² and <p>.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)