Wild-type fungus, protein E (encoded by the haplosufficient gene E) normally dimerizes to catalyzes a biochemical reaction necessary for the production of a dark pigment. Ed represents a mutant, dominant negative allele of gene E. What is the predicted phenotype of a fungus cell of genotype E*/Ed, and why? wild type (normal production of the dark pigment), as E is haplosufficient o mutant (no pigment production), as no dimers will form in the heterozygous mutant (no pigment production), as the mutant allele Ed is dominant O wild type (normal production of the dark pigment), as dimers of wild-type and mutant protein E will be formed in the heterozygous

Human Anatomy & Physiology (11th Edition)
11th Edition
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:Elaine N. Marieb, Katja N. Hoehn
Chapter1: The Human Body: An Orientation
Section: Chapter Questions
Problem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,...
icon
Related questions
Question
In a wild-type fungus, protein E (encoded by the haplosufficient gene E) normally
dimerizes to catalyzes a biochemical reaction necessary for the production of a dark
pigment. Ed represents a mutant, dominant negative allele of gene E. What is the
predicted phenotype of a fungus cell of genotype E*/Ed, and why?
O wild type (normal production of the dark pigment), as E is haplosufficient
mutant (no pigment production), as no dimers will form in the heterozygous
mutant (no pigment production), as the mutant allele Eg is dominant
O wild type (normal production of the dark pigment), as dimers of wild-type and
mutant protein E will be formed in the heterozygous
Transcribed Image Text:In a wild-type fungus, protein E (encoded by the haplosufficient gene E) normally dimerizes to catalyzes a biochemical reaction necessary for the production of a dark pigment. Ed represents a mutant, dominant negative allele of gene E. What is the predicted phenotype of a fungus cell of genotype E*/Ed, and why? O wild type (normal production of the dark pigment), as E is haplosufficient mutant (no pigment production), as no dimers will form in the heterozygous mutant (no pigment production), as the mutant allele Eg is dominant O wild type (normal production of the dark pigment), as dimers of wild-type and mutant protein E will be formed in the heterozygous
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Tissue Renewal
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Human Anatomy & Physiology (11th Edition)
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:
9780134580999
Author:
Elaine N. Marieb, Katja N. Hoehn
Publisher:
PEARSON
Biology 2e
Biology 2e
Biology
ISBN:
9781947172517
Author:
Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:
OpenStax
Anatomy & Physiology
Anatomy & Physiology
Biology
ISBN:
9781259398629
Author:
McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:
Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:
9780815344322
Author:
Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:
W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:
9781260159363
Author:
Martin, Terry R., Prentice-craver, Cynthia
Publisher:
McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Inquiry Into Life (16th Edition)
Biology
ISBN:
9781260231700
Author:
Sylvia S. Mader, Michael Windelspecht
Publisher:
McGraw Hill Education