v (z, t) is a solution of the Schrödinger equation for a free particle of mass m in one dimension, and v (z, 0) = A exp (-z²/a²). (a) At time t = 0 find the probability amplitude in momentum space. (b) Find v(x, t).
Q: A Quantum Harmonic Oscillator, with potential energy V(x) = ½ mω02x2, where m is the mass of the…
A:
Q: Consider an electron confined to a box of length L = 436 pm. (a) A transition between energy levels…
A: Given: An electron is confined to a box with length, L=436 pm. A transition is made between the n=4…
Q: Suppose you have particle that is trapped in a harmonic potential V=12mω2x2. The particle is in its…
A:
Q: Show that the wavelength predicted for a particle in a one-dimensional box of length L from the de…
A: For a box of length L and V=0 in this length, we can write Schrodinger equation -h2mdψ2dx2=Eψ…
Q: Consider the first excited state of the quantum harmonic oscillator (v = 1) and the wavefunction…
A: For quantum harmonic oscillator, its position extends from..For a wave function to be normalized,…
Q: Let ¥₁ (x) and ↳₂2 (x) be normalized stationary states (energy eigenfunctions) of an one-…
A:
Q: Normalize the total wavefunction for a particle in a 2-d box: N sin ("): (") Na,ny (X, y) sin а for…
A:
Q: Calculate the uncertainties dr = V(r2) and dp = Vp?) for a particle confined in the region -a a, r…
A: As we can see the given wave function is normalised and in outside region it's zero. Therefore This…
Q: As a 1-dimensional problem, you are given a particle of mass, m, confined to a box of width, L. The…
A:
Q: Consider a small volume v in a classical ideal gas with volume V and temperature T. (N) Ne-(N) N! PN…
A:
Q: An electron has a kinetic energy of 12.6 eV. The electron is incident upon a rectangular barrier of…
A:
Q: Consider a potential barrierV(x) = {0, xVo, find the transmission coefficient, T
A:
Q: A particle with mass m is moving along the x-axis in a potential given by the potential energy…
A: The potential energy function U(x)=0.5mω2x2 describes a simple harmonic oscillator in quantum…
Q: We have a free particle in one dimension at a time t = 0, the initial wave function is V (x,0) = Ae…
A:
Q: We have a free particle in one dimension at a time t = 0, the initial wave function is V (x, 0) =…
A: To answer the question, we first write the Normalization condition for a wave function, and then use…
Q: Consider a particle with 1-D wave-function (x) = kexp(-x²). Sketch (x),
A:
Q: Assume that you have a quantum mechanical observable N with eigenvalues W; and corresponding…
A: The average value of a function (f) of a variable (j) is the sum of all the products of the…
Q: Consider a classical particle of mass m moving in one spatial dimension with position x and momentum…
A:
Q: What are the expectation values of momentum (p) and p² of a particle in a 1-D box (infinitely hard…
A:
Q: A historic failure of classical physics is its description of the electro- magnetic radiation from a…
A: Classical physics describes the energy of an oscillating electromagnetic wave in terms of its…
Q: Consider a particle of mass m moving in one dimension with wavefunction $(x) Vi for sin L - and zero…
A: The momentum operator is given by Therefore the operator is given by Where The given wave…
Q: Consider a particle of mass m in a one-dimensional box, of dimension L, where the potential vanishes…
A: The unperturbed energy (En0) and the unperturbed wave function (ψn0) of the nth-state of a particle…
Q: For the ground-state of the quantum 2 harmonic oscillator, (x) (a) Normalize the wavefunction. = 2…
A: Required to find the normalization constant.
Q: Let y, (x) denote the orthonormal stationary states of a system corresponding to the energy En.…
A: Expectation value of energy
Q: If you have an admissible wavefunction what can you say about lim Þ(x,t)?
A:
Q: An observable, q, is represented by an operator, . Assuming a system is in a state Ψ(x,t). a)…
A:
Q: Use the time-dependent Schroedinger equation to calculate the period (in seconds) of the…
A: Mass of particle m = 9.109 × 10− 31 kg Width of the box a = 1.2 ×10− 10 m
Q: In the region 0 w, /3 (x) = 0. (a) By applying the continuity conditions at.x = a, find c and d in…
A: Given that the wavefunction of a particle is , ψ1x=-bx2-a2 0≤x≤aψ2x=x-d2-c…
Q: Evaluate , , △x, △px, and △x△px for the provided normalized wave function
A:
Q: Show explicitly (by calculation) that the = * is fulfilled for the expectation value of the…
A:
Q: An electron has a kinetic energy of 13.3 eV. The electron is incident upon a rectangular barrier of…
A:
Q: Suppose we had a classical particle in a frictionless box, bouncing back and forth at constant…
A:


Step by step
Solved in 3 steps with 3 images

- Find (a) the corresponding Schrödinger equation and wave function, (b) the energy for the infinite-walled well problem of size L, (c) the expected value of x (<x>) on the interval [0,a/4], (d) The expected value of p (<p>) for the same interval and (e) the probability of finding at least one particle in the same interval. Do not forget the normalization, nor the conditions at the border.Evaluate the E expressions for both the Classical (continuous, involves integration) and the Quantum (discrete, involves summation) models for the energy density u, (v).The normalised wavefunction for an electron in an infinite 1D potential well of length 80 pm can be written:ψ=(0.587 ψ2)+(0.277 i ψ7)+(g ψ6). As the individual wavefunctions are orthonormal, use your knowledge to work out |g|, and hence find the expectation value for the energy of the particle, in eV.
- Consider the one-dimensional step-potential V (x) = {0 , x < 0; V0 , x > 0}(a) Calculate the probability R that an incoming particle propagating from the x < 0 region to the right will reflect from the step.(b) Calculate the probability T that the particle will be transmitted across the step.(c) Discuss the dependence of R and T on the energy E of the particle, and show that always R+T = 1.[Hints: Use the expression J = (-i*hbar / 2m)*(ψ*(x)ψ′(x) − ψ*'(x)ψ(x)) for the particle current to define current carried by the incoming wave Ji, reflected wave Jr, and transmitted wave Jt across the step.For a simple plane wave ψ(x) = eikx, the current J = hbar*k/m = p/m = v equals the classical particle velocity v. The reflection probability is R = |Jr/Ji|, and the transmission probability is T = |Jt/Ji|. You need to write and solve the Schrodinger equation in regions x < 0 and x > 0 separately, and connect the solutions via boundary conditions at x = 0 (ψ(x) and ψ′(x) must be…consider an infinite square well with sides at x= -L/2 and x = L/2 (centered at the origin). Then the potential energy is 0 for [x] L/2 Let E be the total energy of the particle. =0 (a) Solve the one-dimensional time-independent Schrodinger equation to find y(x) in each region. (b) Apply the boundary condition that must be continuous. (c) Apply the normalization condition. (d) Find the allowed values of E. (e) Sketch w(x) for the three lowest energy states. (f) Compare your results for (d) and (e) to the infinite square well (with sides at x=0 and x=L)Prove in the canonical ensemble that, as T ! 0, the microstate probability ℘m approaches a constant for any ground state m with lowest energy E0 but is otherwise zero for Em > E0 . What is the constant?
- A particle with the velocity v and the probability current density J is incident from the left on a potential step of height Uo, that is, U (x) = Uo at r > 0 and U(x) = 0 at r 0.At time t = 0 the normalized wave function for a particle of mass m in the one-dimensional infinite well (see first image) is given by the function in the second image. Find ψ(x, t). What is the probability that a measurement of the energy at time t will yield the result ħ2π2/2mL2? Find <E> for the particle at time t. (Hint: <E> can be obtained by inspection, without an integral)