A particle with the velocity v and the probability current density J is incident from the left on a potential step of height Uo, that is, U (r) Uo at r > 0 and U(r) = 0 at r < 0. The particle has the energy E < Uo and thus gets fully reflected by the step. Calculate the probability density w(x) to find the particle in the classically-forbidden region r> 0.
Q: What is the actual transmission probability (in %) of an electron with total energy 1.593 eV…
A: The energy of the electron E = 1.593 eV Potential barrier height Vo = 3.183 eV Width of the…
Q: Suppose you have particle that is trapped in a harmonic potential V=12mω2x2. The particle is in its…
A:
Q: ∆E ∆t ≥ ħ Time is a parameter, not an observable. ∆t is some timescale over which the expectation…
A:
Q: Suppose that the electron in the figure, having a total energy E of 4.8 eV, approaches a barrier of…
A:
Q: View the particle system in a one-dimensional box in the range ≤ x ≤ of m-mass and q- charged…
A: The required solution is given below.
Q: Suppose that the probability of observing |0⟩ in the state |ϕ1⟩ is 1/4 and the probability of…
A:
Q: quantum system has a ground state with energy E0 = 0 meV and a 7-fold degenerate excited state with…
A:
Q: Consider a particle with orbital angular momentum and in the state described by a wavefunction…
A: Solution attached in the photo
Q: A proton and a deuteron (which has the same charge as the proton but 2.0 times the mass) are…
A:
Q: At time t = 0, a free particle is in a state described by the normalised wave function V(x, 0) where…
A:
Q: (WF-2) The wave function for a proton moving in 1D is given by: y(x) = Csin(x) for 0 ≤ x ≤ñ and zero…
A: We are given wave function. We have to normalize the wave function. The normalization condition is…
Q: A particle of mass m, which moves freely inside an infinite potential well of length a, is initially…
A: Given: ψ(x,0)=35asin3πxa+15a sin5πxa For the wavefunction at a later time t we have;…
Q: An electron has total energy 6.29 eV. The particle initially travels in a region with constant…
A: Given, Total energy = 6.29 eV Potential energy = 0.61 eV New constant potential energy of 4.03 eV…
Q: The wave function of a particle at time t=0 is given by|w(0)) = (u,) +|u2}), where |u,) and u,) are…
A:
Q: An atom with total energy 1.84 eV, in a region with no potential energy, is incident on a barrier…
A:
Q: energy of the photon?
A: Given data:Width 0.285nmn=4To find:What is the energy of the photon?Find the energies of other…
Q: In quantum mechanics, the probability of finding a particle z in domain [a, b] can be calculated…
A: according to the question, the probability of density ρ(x) proportional to 1x for x∈1,e2 so, ρ(x)…
Q: In a simple model for a radioactive nucleus, an alpha particle (m = 6.64…
A: We know that,Tunneling probability of an alpha particle is,T=Ge-2kLWhere, G=16EU01-EU0&…
Q: Suppose that the electron in the Figure, having a total energy E of 5.1 eV, approaches a barrier of…
A: Given, total energy of electron is, E=5.1 eV height of potential well is, Ub=6.8 eV Thickness is, L…
Q: If you have an admissible wavefunction what can you say about lim Þ(x,t)?
A:
Q: Use the time-dependent Schroedinger equation to calculate the period (in seconds) of the…
A: Mass of particle m = 9.109 × 10− 31 kg Width of the box a = 1.2 ×10− 10 m
Solution:
To calculate the probability density to find the particle in the classically-forbidden region for :
Step by step
Solved in 6 steps
- 6QM Please answer question throughly and detailed.An electron has a kinetic energy of 13.3 eV. The electron is incident upon a rectangular barrier of height 21.5 eV and width 1.00 nm. If the electron absorbed all the energy of a photon of green light (with wavelength 546 nm) at the instant it reached the barrier, by what factor would the electron's probability of tunneling through the barrier increase?For a quantum particle in a scattering state as it interacts a certain potential, the general expressions for the transmission and reflection coefficients are given by T = Jtrans Jinc R = | Jref Jinc (1) where Jinc, Jref, Jtrans are probability currents corresponding to the incident, reflected, and transmitted plane waves, respectively. (a). potential For the particle incident from the left to the symmetric finite square well -Vo; a < x < a, V(x) = 0 ; elsewhere, show that B Ꭲ ; R = A A
- = = An electron having total energy E 4.60 eV approaches a rectangular energy barrier with U■5.10 eV and L-950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero. Energy E U 0 i (a) Calculate this probability, which is the transmission coefficient. (Use 9.11 x 10-31 kg for the mass of an electron, 1.055 x 10-34] s for h, and note that there are 1.60 x 10-19 J per eV.) (b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.60-eV electron tunneling through the barrier to be one in one million? nmConsider the one-dimensional step-potential V (x) = {0 , x < 0; V0 , x > 0}(a) Calculate the probability R that an incoming particle propagating from the x < 0 region to the right will reflect from the step.(b) Calculate the probability T that the particle will be transmitted across the step.(c) Discuss the dependence of R and T on the energy E of the particle, and show that always R+T = 1.[Hints: Use the expression J = (-i*hbar / 2m)*(ψ*(x)ψ′(x) − ψ*'(x)ψ(x)) for the particle current to define current carried by the incoming wave Ji, reflected wave Jr, and transmitted wave Jt across the step.For a simple plane wave ψ(x) = eikx, the current J = hbar*k/m = p/m = v equals the classical particle velocity v. The reflection probability is R = |Jr/Ji|, and the transmission probability is T = |Jt/Ji|. You need to write and solve the Schrodinger equation in regions x < 0 and x > 0 separately, and connect the solutions via boundary conditions at x = 0 (ψ(x) and ψ′(x) must be…Problem 3. Consider the two example systems from quantum mechanics. First, for a particle in a box of length 1 we have the equation h² d²v 2m dx² EV, with boundary conditions (0) = 0 and (1) = 0. Second, the Quantum Harmonic Oscillator (QHO) V = EV h² d² 2m da² +ka²) 1 +kx² 2 (a) Write down the states for both systems. What are their similarities and differences? (b) Write down the energy eigenvalues for both systems. What are their similarities and differences? (c) Plot the first three states of the QHO along with the potential for the system. (d) Explain why you can observe a particle outside of the "classically allowed region". Hint: you can use any state and compute an integral to determine a probability of a particle being in a given region.